© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1026Visit 1026's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1026's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X16,8,17,7 X12,3,13,4 X2,15,3,16 X14,5,15,6 X4,13,5,14 X20,12,1,11 X8,20,9,19 X18,10,19,9 X10,18,11,17 |
Gauss Code: | {1, -4, 3, -6, 5, -1, 2, -8, 9, -10, 7, -3, 6, -5, 4, -2, 10, -9, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 6 12 14 16 18 20 4 2 10 8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 7t-2 - 13t-1 + 17 - 13t + 7t2 - 2t3 |
Conway Polynomial: | 1 - 3z2 - 5z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {61, 0} |
Jones Polynomial: | q-4 - 3q-3 + 6q-2 - 8q-1 + 10 - 10q + 9q2 - 7q3 + 4q4 - 2q5 + q6 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-12 - q-10 + q-8 + q-6 - q-4 + 3q-2 - 1 + q2 - q4 - 2q6 + q8 - 2q10 + q12 + q14 + q18 |
HOMFLY-PT Polynomial: | 2a-4 + 3a-4z2 + a-4z4 - 3a-2 - 6a-2z2 - 4a-2z4 - a-2z6 + 1 - 2z2 - 3z4 - z6 + a2 + 2a2z2 + a2z4 |
Kauffman Polynomial: | 4a-6z2 - 4a-6z4 + a-6z6 - 2a-5z + 7a-5z3 - 7a-5z5 + 2a-5z7 + 2a-4 - 4a-4z2 + 4a-4z4 - 5a-4z6 + 2a-4z8 - 2a-3z + 4a-3z3 - 6a-3z5 + a-3z7 + a-3z9 + 3a-2 - 12a-2z2 + 14a-2z4 - 12a-2z6 + 5a-2z8 - a-1z + 5a-1z3 - 9a-1z5 + 4a-1z7 + a-1z9 + 1 + z2 - 2z4 - z6 + 3z8 - az + 5az3 - 7az5 + 5az7 - a2 + 4a2z2 - 7a2z4 + 5a2z6 - 3a3z3 + 3a3z5 - a4z2 + a4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-3, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1026. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-12 - 3q-11 + 2q-10 + 7q-9 - 16q-8 + 6q-7 + 25q-6 - 41q-5 + 7q-4 + 53q-3 - 67q-2 + 2q-1 + 78 - 78q - 8q2 + 85q3 - 67q4 - 19q5 + 73q6 - 42q7 - 23q8 + 47q9 - 18q10 - 17q11 + 21q12 - 4q13 - 8q14 + 6q15 - 2q17 + q18 |
3 | q-24 - 3q-23 + 2q-22 + 3q-21 - q-20 - 10q-19 + 4q-18 + 20q-17 - 7q-16 - 37q-15 + 11q-14 + 60q-13 - 8q-12 - 100q-11 + 9q-10 + 141q-9 + 5q-8 - 197q-7 - 19q-6 + 244q-5 + 51q-4 - 295q-3 - 77q-2 + 322q-1 + 117 - 343q - 144q2 + 335q3 + 178q4 - 318q5 - 199q6 + 284q7 + 214q8 - 237q9 - 224q10 + 187q11 + 219q12 - 133q13 - 207q14 + 85q15 + 180q16 - 39q17 - 150q18 + 9q19 + 113q20 + 11q21 - 76q22 - 22q23 + 49q24 + 19q25 - 24q26 - 18q27 + 14q28 + 9q29 - 4q30 - 7q31 + 3q32 + 2q33 - 2q35 + q36 |
4 | q-40 - 3q-39 + 2q-38 + 3q-37 - 5q-36 + 5q-35 - 12q-34 + 10q-33 + 14q-32 - 22q-31 + 14q-30 - 39q-29 + 33q-28 + 51q-27 - 61q-26 + 14q-25 - 101q-24 + 93q-23 + 147q-22 - 122q-21 - 32q-20 - 246q-19 + 207q-18 + 373q-17 - 159q-16 - 172q-15 - 551q-14 + 334q-13 + 764q-12 - 68q-11 - 353q-10 - 1042q-9 + 351q-8 + 1220q-7 + 198q-6 - 436q-5 - 1579q-4 + 196q-3 + 1532q-2 + 537q-1 - 330 - 1949q - 66q2 + 1577q3 + 798q4 - 84q5 - 2038q6 - 328q7 + 1372q8 + 921q9 + 220q10 - 1877q11 - 543q12 + 1002q13 + 920q14 + 520q15 - 1526q16 - 689q17 + 541q18 + 801q19 + 758q20 - 1046q21 - 714q22 + 95q23 + 552q24 + 834q25 - 530q26 - 564q27 - 206q28 + 231q29 + 695q30 - 135q31 - 296q32 - 273q33 - 18q34 + 417q35 + 37q36 - 65q37 - 175q38 - 103q39 + 173q40 + 41q41 + 29q42 - 62q43 - 74q44 + 51q45 + 8q46 + 28q47 - 11q48 - 30q49 + 14q50 - 3q51 + 10q52 - 9q54 + 4q55 - q56 + 2q57 - 2q59 + q60 |
5 | q-60 - 3q-59 + 2q-58 + 3q-57 - 5q-56 + q-55 + 3q-54 - 6q-53 + 4q-52 + 10q-51 - 11q-50 - 8q-49 + 8q-48 - 4q-47 + 10q-46 + 15q-45 - 16q-44 - 29q-43 - q-42 + 26q-41 + 41q-40 + 20q-39 - 60q-38 - 100q-37 - 27q-36 + 117q-35 + 206q-34 + 72q-33 - 222q-32 - 393q-31 - 175q-30 + 336q-29 + 716q-28 + 427q-27 - 500q-26 - 1179q-25 - 806q-24 + 540q-23 + 1786q-22 + 1489q-21 - 525q-20 - 2484q-19 - 2326q-18 + 231q-17 + 3154q-16 + 3452q-15 + 244q-14 - 3727q-13 - 4588q-12 - 1029q-11 + 4070q-10 + 5771q-9 + 1925q-8 - 4157q-7 - 6708q-6 - 2970q-5 + 3966q-4 + 7477q-3 + 3883q-2 - 3559q-1 - 7836 - 4759q + 3001q2 + 7995q3 + 5351q4 - 2376q5 - 7803q6 - 5807q7 + 1702q8 + 7485q9 + 6039q10 - 1057q11 - 6949q12 - 6152q13 + 387q14 + 6316q15 + 6150q16 + 287q17 - 5572q18 - 6040q19 - 974q20 + 4696q21 + 5837q22 + 1671q23 - 3739q24 - 5484q25 - 2307q26 + 2659q27 + 4993q28 + 2828q29 - 1568q30 - 4281q31 - 3180q32 + 496q33 + 3447q34 + 3257q35 + 417q36 - 2462q37 - 3071q38 - 1137q39 + 1511q40 + 2634q41 + 1527q42 - 631q43 - 2015q44 - 1643q45 - 45q46 + 1360q47 + 1490q48 + 452q49 - 739q50 - 1158q51 - 652q52 + 272q53 + 806q54 + 606q55 + 25q56 - 437q57 - 502q58 - 163q59 + 213q60 + 314q61 + 181q62 - 38q63 - 191q64 - 147q65 - 7q66 + 73q67 + 93q68 + 45q69 - 39q70 - 51q71 - 18q72 - 3q73 + 22q74 + 26q75 - 5q76 - 13q77 - 6q79 + q80 + 9q81 - q82 - 5q83 + 2q84 - q86 + 2q87 - 2q89 + q90 |
6 | q-84 - 3q-83 + 2q-82 + 3q-81 - 5q-80 + q-79 - q-78 + 9q-77 - 12q-76 + 21q-74 - 22q-73 - q-72 - q-71 + 28q-70 - 30q-69 - 11q-68 + 64q-67 - 53q-66 - 9q-65 + 2q-64 + 79q-63 - 77q-62 - 48q-61 + 138q-60 - 126q-59 - 15q-58 + 35q-57 + 237q-56 - 117q-55 - 152q-54 + 160q-53 - 391q-52 - 108q-51 + 175q-50 + 762q-49 + 130q-48 - 183q-47 - 61q-46 - 1349q-45 - 809q-44 + 232q-43 + 2098q-42 + 1516q-41 + 669q-40 - 347q-39 - 3749q-38 - 3431q-37 - 931q-36 + 4105q-35 + 5165q-34 + 4225q-33 + 724q-32 - 7460q-31 - 9403q-30 - 5564q-29 + 4982q-28 + 10841q-27 + 12094q-26 + 5736q-25 - 10219q-24 - 18130q-23 - 15209q-22 + 1745q-21 + 15693q-20 + 23124q-19 + 16005q-18 - 8665q-17 - 25997q-16 - 27995q-15 - 6794q-14 + 16016q-13 + 32992q-12 + 29034q-11 - 1762q-10 - 28980q-9 - 39064q-8 - 17871q-7 + 10926q-6 + 37603q-5 + 39858q-4 + 7636q-3 - 26330q-2 - 44552q-1 - 26904 + 3228q + 36470q2 + 45193q3 + 15511q4 - 20643q5 - 44351q6 - 31467q7 - 3705q8 + 32020q9 + 45409q10 + 20206q11 - 14621q12 - 40746q13 - 32380q14 - 8864q15 + 26403q16 + 42667q17 + 22785q18 - 8775q19 - 35451q20 - 31571q21 - 13356q22 + 19818q23 + 38251q24 + 24733q25 - 2122q26 - 28415q27 - 29698q28 - 18097q29 + 11443q30 + 31729q31 + 25911q32 + 5635q33 - 18883q34 - 25658q35 - 22100q36 + 1482q37 + 22182q38 + 24440q39 + 12715q40 - 7413q41 - 18115q42 - 22779q43 - 7659q44 + 10345q45 + 18619q46 + 15938q47 + 3090q48 - 7858q49 - 18276q50 - 12397q51 - 478q52 + 9446q53 + 13402q54 + 8808q55 + 1541q56 - 9989q57 - 11004q58 - 6364q59 + 849q60 + 6902q61 + 8317q62 + 6247q63 - 2183q64 - 5716q65 - 6282q66 - 3447q67 + 819q68 + 4221q69 + 5699q70 + 1671q71 - 875q72 - 3091q73 - 3253q74 - 1846q75 + 603q76 + 2839q77 + 1762q78 + 1073q79 - 445q80 - 1354q81 - 1620q82 - 701q83 + 707q84 + 617q85 + 886q86 + 400q87 - 105q88 - 663q89 - 535q90 + 8q91 - 40q92 + 297q93 + 276q94 + 182q95 - 146q96 - 180q97 - 21q98 - 125q99 + 32q100 + 74q101 + 111q102 - 19q103 - 38q104 + 19q105 - 56q106 - 10q107 + 5q108 + 39q109 - 5q110 - 11q111 + 17q112 - 14q113 - 4q114 - 3q115 + 11q116 - 2q117 - 6q118 + 6q119 - 2q120 - q122 + 2q123 - 2q125 + q126 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 26]] |
Out[2]= | PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[12, 3, 13, 4], X[2, 15, 3, 16], > X[14, 5, 15, 6], X[4, 13, 5, 14], X[20, 12, 1, 11], X[8, 20, 9, 19], > X[18, 10, 19, 9], X[10, 18, 11, 17]] |
In[3]:= | GaussCode[Knot[10, 26]] |
Out[3]= | GaussCode[1, -4, 3, -6, 5, -1, 2, -8, 9, -10, 7, -3, 6, -5, 4, -2, 10, -9, 8, > -7] |
In[4]:= | DTCode[Knot[10, 26]] |
Out[4]= | DTCode[6, 12, 14, 16, 18, 20, 4, 2, 10, 8] |
In[5]:= | br = BR[Knot[10, 26]] |
Out[5]= | BR[4, {-1, -1, -1, 2, -1, 2, 2, 2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 26]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 26]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 26]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 26]][t] |
Out[10]= | 2 7 13 2 3 17 - -- + -- - -- - 13 t + 7 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 26]][z] |
Out[11]= | 2 4 6 1 - 3 z - 5 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 26]} |
In[13]:= | {KnotDet[Knot[10, 26]], KnotSignature[Knot[10, 26]]} |
Out[13]= | {61, 0} |
In[14]:= | Jones[Knot[10, 26]][q] |
Out[14]= | -4 3 6 8 2 3 4 5 6 10 + q - -- + -- - - - 10 q + 9 q - 7 q + 4 q - 2 q + q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 26]} |
In[16]:= | A2Invariant[Knot[10, 26]][q] |
Out[16]= | -12 -10 -8 -6 -4 3 2 4 6 8 10 12 -1 + q - q + q + q - q + -- + q - q - 2 q + q - 2 q + q + 2 q 14 18 > q + q |
In[17]:= | HOMFLYPT[Knot[10, 26]][a, z] |
Out[17]= | 2 2 4 4 2 3 2 2 3 z 6 z 2 2 4 z 4 z 2 4 1 + -- - -- + a - 2 z + ---- - ---- + 2 a z - 3 z + -- - ---- + a z - 4 2 4 2 4 2 a a a a a a 6 6 z > z - -- 2 a |
In[18]:= | Kauffman[Knot[10, 26]][a, z] |
Out[18]= | 2 2 2 2 3 2 2 z 2 z z 2 4 z 4 z 12 z 2 2 1 + -- + -- - a - --- - --- - - - a z + z + ---- - ---- - ----- + 4 a z - 4 2 5 3 a 6 4 2 a a a a a a a 3 3 3 4 4 4 2 7 z 4 z 5 z 3 3 3 4 4 z 4 z > a z + ---- + ---- + ---- + 5 a z - 3 a z - 2 z - ---- + ---- + 5 3 a 6 4 a a a a 4 5 5 5 6 14 z 2 4 4 4 7 z 6 z 9 z 5 3 5 6 z > ----- - 7 a z + a z - ---- - ---- - ---- - 7 a z + 3 a z - z + -- - 2 5 3 a 6 a a a a 6 6 7 7 7 8 8 5 z 12 z 2 6 2 z z 4 z 7 8 2 z 5 z > ---- - ----- + 5 a z + ---- + -- + ---- + 5 a z + 3 z + ---- + ---- + 4 2 5 3 a 4 2 a a a a a a 9 9 z z > -- + -- 3 a a |
In[19]:= | {Vassiliev[2][Knot[10, 26]], Vassiliev[3][Knot[10, 26]]} |
Out[19]= | {-3, -2} |
In[20]:= | Kh[Knot[10, 26]][q, t] |
Out[20]= | 6 1 2 1 4 2 4 4 3 - + 5 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 5 q t + 5 q t + q 9 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t 3 2 5 2 5 3 7 3 7 4 9 4 9 5 11 5 > 4 q t + 5 q t + 3 q t + 4 q t + q t + 3 q t + q t + q t + 13 6 > q t |
In[21]:= | ColouredJones[Knot[10, 26], 2][q] |
Out[21]= | -12 3 2 7 16 6 25 41 7 53 67 2 78 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - -- + - - 78 q - 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 2 3 4 5 6 7 8 9 10 > 8 q + 85 q - 67 q - 19 q + 73 q - 42 q - 23 q + 47 q - 18 q - 11 12 13 14 15 17 18 > 17 q + 21 q - 4 q - 8 q + 6 q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1026 |
|