© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1020Visit 1020's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1020's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,18,6,19 X7,20,8,1 X19,6,20,7 X9,16,10,17 X15,10,16,11 X17,8,18,9 |
Gauss Code: | {-1, 4, -3, 1, -5, 7, -6, 10, -8, 9, -2, 3, -4, 2, -9, 8, -10, 5, -7, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 12 18 20 16 14 2 10 8 6 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 3t-2 + 9t-1 - 11 + 9t - 3t2 |
Conway Polynomial: | 1 - 3z2 - 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {10162, K11n117, ...} |
Determinant and Signature: | {35, -2} |
Jones Polynomial: | q-9 - 2q-8 + 3q-7 - 4q-6 + 5q-5 - 6q-4 + 5q-3 - 4q-2 + 3q-1 - 1 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-28 + q-22 - q-20 - q-14 - q-10 - q-4 + 2q-2 + 1 + q2 + q4 |
HOMFLY-PT Polynomial: | 2 + z2 - a2 - 2a2z2 - a2z4 - a4z2 - a4z4 - a6 - 2a6z2 - a6z4 + a8 + a8z2 |
Kauffman Polynomial: | 2 - 3z2 + z4 - az - az3 + az5 + a2 - 2a2z2 + a2z6 - a3z + 2a3z3 - a3z5 + a3z7 + 3a4z4 - 2a4z6 + a4z8 + 3a5z - 8a5z3 + 9a5z5 - 4a5z7 + a5z9 + a6 - 9a6z2 + 17a6z4 - 12a6z6 + 3a6z8 + 2a7z - 4a7z3 + 3a7z5 - 3a7z7 + a7z9 + a8 - 5a8z2 + 9a8z4 - 8a8z6 + 2a8z8 - a9z + 7a9z3 - 8a9z5 + 2a9z7 + 3a10z2 - 4a10z4 + a10z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-3, 6} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1020. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-26 - 2q-25 + 5q-23 - 6q-22 - 3q-21 + 12q-20 - 7q-19 - 9q-18 + 17q-17 - 5q-16 - 15q-15 + 19q-14 - q-13 - 19q-12 + 19q-11 + 2q-10 - 19q-9 + 15q-8 + 2q-7 - 13q-6 + 10q-5 - 7q-3 + 6q-2 - q-1 - 3 + 3q - q3 + q4 |
3 | q-51 - 2q-50 + 2q-48 + 2q-47 - 5q-46 - 4q-45 + 7q-44 + 9q-43 - 9q-42 - 13q-41 + 6q-40 + 20q-39 - 4q-38 - 23q-37 - q-36 + 24q-35 + 6q-34 - 22q-33 - 10q-32 + 18q-31 + 12q-30 - 12q-29 - 12q-28 + 5q-27 + 13q-26 - 11q-24 - 8q-23 + 12q-22 + 9q-21 - 7q-20 - 16q-19 + 8q-18 + 15q-17 - 2q-16 - 15q-15 - 2q-14 + 11q-13 + 6q-12 - 5q-11 - 9q-10 + q-9 + 6q-8 + 8q-7 - 9q-6 - 4q-5 + 11q-3 - 4q-2 - 4q-1 - 3 + 7q - q2 - q3 - 3q4 + 3q5 - q8 + q9 |
4 | q-84 - 2q-83 + 2q-81 - q-80 + 3q-79 - 7q-78 + 7q-76 - q-75 + 10q-74 - 19q-73 - 8q-72 + 13q-71 + 3q-70 + 29q-69 - 28q-68 - 23q-67 + 6q-66 - 2q-65 + 57q-64 - 22q-63 - 29q-62 - 4q-61 - 22q-60 + 69q-59 - 16q-58 - 16q-57 + 6q-56 - 41q-55 + 59q-54 - 33q-53 - 5q-52 + 40q-51 - 34q-50 + 45q-49 - 74q-48 - 13q-47 + 80q-46 - 5q-45 + 42q-44 - 119q-43 - 38q-42 + 110q-41 + 29q-40 + 47q-39 - 153q-38 - 63q-37 + 129q-36 + 56q-35 + 53q-34 - 174q-33 - 83q-32 + 137q-31 + 77q-30 + 57q-29 - 180q-28 - 99q-27 + 125q-26 + 89q-25 + 73q-24 - 159q-23 - 114q-22 + 85q-21 + 81q-20 + 94q-19 - 109q-18 - 106q-17 + 33q-16 + 45q-15 + 96q-14 - 50q-13 - 73q-12 - q-11 + 8q-10 + 73q-9 - 13q-8 - 37q-7 - 9q-6 - 11q-5 + 44q-4 - 14q-2 - 6q-1 - 13 + 22q + q2 - 3q3 - 2q4 - 9q5 + 9q6 - 4q10 + 3q11 - q15 + q16 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 20]] |
Out[2]= | PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], > X[5, 18, 6, 19], X[7, 20, 8, 1], X[19, 6, 20, 7], X[9, 16, 10, 17], > X[15, 10, 16, 11], X[17, 8, 18, 9]] |
In[3]:= | GaussCode[Knot[10, 20]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -5, 7, -6, 10, -8, 9, -2, 3, -4, 2, -9, 8, -10, 5, -7, > 6] |
In[4]:= | DTCode[Knot[10, 20]] |
Out[4]= | DTCode[4, 12, 18, 20, 16, 14, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[10, 20]] |
Out[5]= | BR[5, {-1, -1, -1, -1, -2, 1, -2, -3, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 20]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 20]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 20]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 20]][t] |
Out[10]= | 3 9 2 -11 - -- + - + 9 t - 3 t 2 t t |
In[11]:= | Conway[Knot[10, 20]][z] |
Out[11]= | 2 4 1 - 3 z - 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 20], Knot[10, 162], Knot[11, NonAlternating, 117]} |
In[13]:= | {KnotDet[Knot[10, 20]], KnotSignature[Knot[10, 20]]} |
Out[13]= | {35, -2} |
In[14]:= | Jones[Knot[10, 20]][q] |
Out[14]= | -9 2 3 4 5 6 5 4 3 -1 + q - -- + -- - -- + -- - -- + -- - -- + - + q 8 7 6 5 4 3 2 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 20]} |
In[16]:= | A2Invariant[Knot[10, 20]][q] |
Out[16]= | -28 -22 -20 -14 -10 -4 2 2 4 1 + q + q - q - q - q - q + -- + q + q 2 q |
In[17]:= | HOMFLYPT[Knot[10, 20]][a, z] |
Out[17]= | 2 6 8 2 2 2 4 2 6 2 8 2 2 4 4 4 2 - a - a + a + z - 2 a z - a z - 2 a z + a z - a z - a z - 6 4 > a z |
In[18]:= | Kauffman[Knot[10, 20]][a, z] |
Out[18]= | 2 6 8 3 5 7 9 2 2 2 2 + a + a + a - a z - a z + 3 a z + 2 a z - a z - 3 z - 2 a z - 6 2 8 2 10 2 3 3 3 5 3 7 3 > 9 a z - 5 a z + 3 a z - a z + 2 a z - 8 a z - 4 a z + 9 3 4 4 4 6 4 8 4 10 4 5 3 5 > 7 a z + z + 3 a z + 17 a z + 9 a z - 4 a z + a z - a z + 5 5 7 5 9 5 2 6 4 6 6 6 8 6 > 9 a z + 3 a z - 8 a z + a z - 2 a z - 12 a z - 8 a z + 10 6 3 7 5 7 7 7 9 7 4 8 6 8 8 8 > a z + a z - 4 a z - 3 a z + 2 a z + a z + 3 a z + 2 a z + 5 9 7 9 > a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 20]], Vassiliev[3][Knot[10, 20]]} |
Out[19]= | {-3, 6} |
In[20]:= | Kh[Knot[10, 20]][q, t] |
Out[20]= | -3 3 1 1 1 2 1 2 2 q + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 q t q t q t q t q t q t q t 3 2 3 3 2 3 2 2 t 3 2 > ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + - + q t 11 4 9 4 9 3 7 3 7 2 5 2 5 3 q q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 20], 2][q] |
Out[21]= | -26 2 5 6 3 12 7 9 17 5 15 19 -3 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 25 23 22 21 20 19 18 17 16 15 14 q q q q q q q q q q q -13 19 19 2 19 15 2 13 10 7 6 1 3 > q - --- + --- + --- - -- + -- + -- - -- + -- - -- + -- - - + 3 q - q + 12 11 10 9 8 7 6 5 3 2 q q q q q q q q q q q 4 > q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1020 |
|