© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1019Visit 1019's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1019's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X3,12,4,13 X15,1,16,20 X7,17,8,16 X19,9,20,8 X9,19,10,18 X17,11,18,10 X5,14,6,15 X11,2,12,3 X13,4,14,5 |
Gauss Code: | {-1, 9, -2, 10, -8, 1, -4, 5, -6, 7, -9, 2, -10, 8, -3, 4, -7, 6, -5, 3} |
DT (Dowker-Thistlethwaite) Code: | 6 12 14 16 18 2 4 20 10 8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 7t-2 + 11t-1 - 11 + 11t - 7t2 + 2t3 |
Conway Polynomial: | 1 + z2 + 5z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {51, -2} |
Jones Polynomial: | - q-6 + 3q-5 - 5q-4 + 7q-3 - 8q-2 + 8q-1 - 7 + 6q - 3q2 + 2q3 - q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-18 + q-16 + q-10 - 2q-8 + q-6 - q-4 + q-2 + 2 + 2q4 - q12 |
HOMFLY-PT Polynomial: | - a-2 - 3a-2z2 - a-2z4 + 3 + 5z2 + 4z4 + z6 - a2 + a2z2 + 3a2z4 + a2z6 - 2a4z2 - a4z4 |
Kauffman Polynomial: | - 2a-3z + 7a-3z3 - 5a-3z5 + a-3z7 + a-2 - 9a-2z2 + 16a-2z4 - 10a-2z6 + 2a-2z8 - 4a-1z + 13a-1z3 - 8a-1z5 - a-1z7 + a-1z9 + 3 - 13z2 + 23z4 - 19z6 + 5z8 - 2az + 11az3 - 15az5 + 3az7 + az9 + a2 - 4a2z4 - 3a2z6 + 3a2z8 + a3z - 7a3z5 + 5a3z7 + 3a4z2 - 8a4z4 + 6a4z6 + a5z - 4a5z3 + 5a5z5 - a6z2 + 3a6z4 + a7z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1019. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-17 - 3q-16 + 2q-15 + 5q-14 - 13q-13 + 9q-12 + 11q-11 - 29q-10 + 19q-9 + 18q-8 - 44q-7 + 25q-6 + 26q-5 - 52q-4 + 21q-3 + 33q-2 - 49q-1 + 11 + 34q - 36q2 + q3 + 27q4 - 20q5 - 4q6 + 16q7 - 7q8 - 5q9 + 6q10 - q11 - 2q12 + q13 |
3 | - q-33 + 3q-32 - 2q-31 - 2q-30 + q-29 + 6q-28 - 4q-27 - 10q-26 + 10q-25 + 11q-24 - 15q-23 - 15q-22 + 26q-21 + 14q-20 - 36q-19 - 15q-18 + 52q-17 + 13q-16 - 66q-15 - 16q-14 + 82q-13 + 20q-12 - 91q-11 - 32q-10 + 96q-9 + 45q-8 - 93q-7 - 60q-6 + 86q-5 + 72q-4 - 69q-3 - 87q-2 + 59q-1 + 87 - 36q - 96q2 + 26q3 + 87q4 - 3q5 - 87q6 - 5q7 + 70q8 + 24q9 - 61q10 - 28q11 + 41q12 + 34q13 - 26q14 - 31q15 + 12q16 + 24q17 - q18 - 18q19 - 2q20 + 9q21 + 4q22 - 5q23 - 2q24 + q25 + 2q26 - q27 |
4 | q-54 - 3q-53 + 2q-52 + 2q-51 - 4q-50 + 6q-49 - 11q-48 + 9q-47 + 5q-46 - 15q-45 + 20q-44 - 29q-43 + 21q-42 + 9q-41 - 34q-40 + 51q-39 - 51q-38 + 25q-37 - 2q-36 - 52q-35 + 120q-34 - 65q-33 + 4q-32 - 51q-31 - 77q-30 + 237q-29 - 38q-28 - 29q-27 - 155q-26 - 137q-25 + 370q-24 + 40q-23 - 22q-22 - 265q-21 - 246q-20 + 437q-19 + 122q-18 + 52q-17 - 301q-16 - 354q-15 + 401q-14 + 136q-13 + 154q-12 - 238q-11 - 402q-10 + 302q-9 + 78q-8 + 228q-7 - 129q-6 - 382q-5 + 193q-4 - 6q-3 + 267q-2 - 20q-1 - 331 + 90q - 83q2 + 276q3 + 77q4 - 254q5 + 4q6 - 160q7 + 241q8 + 157q9 - 141q10 - 38q11 - 223q12 + 148q13 + 179q14 - 15q15 - 9q16 - 233q17 + 29q18 + 123q19 + 62q20 + 56q21 - 168q22 - 44q23 + 32q24 + 57q25 + 89q26 - 73q27 - 43q28 - 22q29 + 13q30 + 66q31 - 12q32 - 13q33 - 23q34 - 10q35 + 27q36 + 2q37 + 2q38 - 7q39 - 8q40 + 6q41 + q42 + 2q43 - q44 - 2q45 + q46 |
5 | - q-80 + 3q-79 - 2q-78 - 2q-77 + 4q-76 - 3q-75 - q-74 + 6q-73 - 4q-72 - 6q-71 + 8q-70 - q-69 - q-68 + 8q-67 - 6q-66 - 12q-65 - 2q-64 + 6q-63 + 16q-62 + 17q-61 + 2q-60 - 39q-59 - 53q-58 - 2q-57 + 71q-56 + 97q-55 + 36q-54 - 112q-53 - 205q-52 - 79q-51 + 186q-50 + 326q-49 + 164q-48 - 240q-47 - 523q-46 - 300q-45 + 313q-44 + 736q-43 + 491q-42 - 330q-41 - 987q-40 - 740q-39 + 306q-38 + 1211q-37 + 1037q-36 - 205q-35 - 1402q-34 - 1329q-33 + 40q-32 + 1489q-31 + 1602q-30 + 178q-29 - 1496q-28 - 1792q-27 - 393q-26 + 1388q-25 + 1880q-24 + 608q-23 - 1234q-22 - 1869q-21 - 745q-20 + 1030q-19 + 1770q-18 + 834q-17 - 832q-16 - 1622q-15 - 857q-14 + 639q-13 + 1453q-12 + 861q-11 - 491q-10 - 1269q-9 - 831q-8 + 311q-7 + 1109q-6 + 833q-5 - 192q-4 - 921q-3 - 791q-2 - 10q-1 + 752 + 790q + 133q2 - 528q3 - 715q4 - 329q5 + 323q6 + 645q7 + 410q8 - 71q9 - 484q10 - 518q11 - 126q12 + 319q13 + 473q14 + 323q15 - 90q16 - 436q17 - 409q18 - 92q19 + 257q20 + 445q21 + 277q22 - 115q23 - 377q24 - 343q25 - 84q26 + 251q27 + 378q28 + 199q29 - 107q30 - 298q31 - 270q32 - 43q33 + 202q34 + 266q35 + 129q36 - 80q37 - 203q38 - 173q39 - 17q40 + 128q41 + 154q42 + 71q43 - 44q44 - 115q45 - 87q46 - 3q47 + 60q48 + 70q49 + 37q50 - 27q51 - 49q52 - 28q53 - 2q54 + 21q55 + 29q56 + 7q57 - 13q58 - 10q59 - 7q60 - 2q61 + 9q62 + 6q63 - 2q64 - 2q65 - q66 - 2q67 + q68 + 2q69 - q70 |
6 | q-111 - 3q-110 + 2q-109 + 2q-108 - 4q-107 + 3q-106 - 2q-105 + 6q-104 - 11q-103 + 5q-102 + 13q-101 - 21q-100 + 7q-99 - 3q-98 + 13q-97 - 22q-96 + 19q-95 + 38q-94 - 58q-93 + 2q-92 - 13q-91 + 17q-90 - 35q-89 + 74q-88 + 109q-87 - 121q-86 - 39q-85 - 85q-84 - 18q-83 - 26q-82 + 240q-81 + 308q-80 - 195q-79 - 189q-78 - 338q-77 - 179q-76 + 50q-75 + 662q-74 + 783q-73 - 238q-72 - 579q-71 - 979q-70 - 606q-69 + 229q-68 + 1541q-67 + 1767q-66 - 122q-65 - 1294q-64 - 2258q-63 - 1556q-62 + 382q-61 + 2950q-60 + 3521q-59 + 486q-58 - 2112q-57 - 4198q-56 - 3341q-55 + 41q-54 + 4498q-53 + 5998q-52 + 2001q-51 - 2361q-50 - 6223q-49 - 5863q-48 - 1318q-47 + 5297q-46 + 8435q-45 + 4292q-44 - 1423q-43 - 7289q-42 - 8205q-41 - 3485q-40 + 4702q-39 + 9672q-38 + 6336q-37 + 403q-36 - 6809q-35 - 9210q-34 - 5375q-33 + 3131q-32 + 9258q-31 + 7094q-30 + 2024q-29 - 5347q-28 - 8648q-27 - 6122q-26 + 1644q-25 + 7895q-24 + 6594q-23 + 2784q-22 - 3911q-21 - 7356q-20 - 5953q-19 + 726q-18 + 6509q-17 + 5699q-16 + 3018q-15 - 2826q-14 - 6126q-13 - 5644q-12 + 6q-11 + 5280q-10 + 4984q-9 + 3341q-8 - 1720q-7 - 4974q-6 - 5506q-5 - 959q-4 + 3832q-3 + 4267q-2 + 3821q-1 - 282 - 3486q - 5182q2 - 2060q3 + 1959q4 + 3078q5 + 3967q6 + 1250q7 - 1507q8 - 4167q9 - 2711q10 + 4q11 + 1290q12 + 3249q13 + 2207q14 + 536q15 - 2379q16 - 2345q17 - 1286q18 - 599q19 + 1642q20 + 2006q21 + 1814q22 - 422q23 - 984q24 - 1314q25 - 1697q26 - 137q27 + 757q28 + 1742q29 + 729q30 + 540q31 - 284q32 - 1463q33 - 1061q34 - 589q35 + 651q36 + 582q37 + 1190q38 + 775q39 - 368q40 - 761q41 - 1029q42 - 351q43 - 273q44 + 740q45 + 961q46 + 474q47 + 53q48 - 519q49 - 495q50 - 778q51 - 20q52 + 403q53 + 494q54 + 437q55 + 110q56 - 63q57 - 585q58 - 306q59 - 104q60 + 107q61 + 257q62 + 263q63 + 234q64 - 176q65 - 154q66 - 179q67 - 100q68 - 5q69 + 108q70 + 198q71 + 12q72 + 9q73 - 62q74 - 69q75 - 71q76 - 7q77 + 75q78 + 16q79 + 34q80 + 2q81 - 10q82 - 35q83 - 20q84 + 17q85 - q86 + 12q87 + 6q88 + 5q89 - 9q90 - 8q91 + 4q92 - 2q93 + 2q94 + q95 + 2q96 - q97 - 2q98 + q99 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 19]] |
Out[2]= | PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[15, 1, 16, 20], X[7, 17, 8, 16], > X[19, 9, 20, 8], X[9, 19, 10, 18], X[17, 11, 18, 10], X[5, 14, 6, 15], > X[11, 2, 12, 3], X[13, 4, 14, 5]] |
In[3]:= | GaussCode[Knot[10, 19]] |
Out[3]= | GaussCode[-1, 9, -2, 10, -8, 1, -4, 5, -6, 7, -9, 2, -10, 8, -3, 4, -7, 6, -5, > 3] |
In[4]:= | DTCode[Knot[10, 19]] |
Out[4]= | DTCode[6, 12, 14, 16, 18, 2, 4, 20, 10, 8] |
In[5]:= | br = BR[Knot[10, 19]] |
Out[5]= | BR[4, {-1, -1, -1, -1, 2, -1, 2, 2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 19]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 19]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 19]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 19]][t] |
Out[10]= | 2 7 11 2 3 -11 + -- - -- + -- + 11 t - 7 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 19]][z] |
Out[11]= | 2 4 6 1 + z + 5 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 19]} |
In[13]:= | {KnotDet[Knot[10, 19]], KnotSignature[Knot[10, 19]]} |
Out[13]= | {51, -2} |
In[14]:= | Jones[Knot[10, 19]][q] |
Out[14]= | -6 3 5 7 8 8 2 3 4 -7 - q + -- - -- + -- - -- + - + 6 q - 3 q + 2 q - q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 19]} |
In[16]:= | A2Invariant[Knot[10, 19]][q] |
Out[16]= | -18 -16 -10 2 -6 -4 -2 4 12 2 - q + q + q - -- + q - q + q + 2 q - q 8 q |
In[17]:= | HOMFLYPT[Knot[10, 19]][a, z] |
Out[17]= | 2 4 -2 2 2 3 z 2 2 4 2 4 z 2 4 4 4 3 - a - a + 5 z - ---- + a z - 2 a z + 4 z - -- + 3 a z - a z + 2 2 a a 6 2 6 > z + a z |
In[18]:= | Kauffman[Knot[10, 19]][a, z] |
Out[18]= | 2 -2 2 2 z 4 z 3 5 2 9 z 4 2 3 + a + a - --- - --- - 2 a z + a z + a z - 13 z - ---- + 3 a z - 3 a 2 a a 3 3 4 6 2 7 z 13 z 3 5 3 7 3 4 16 z > a z + ---- + ----- + 11 a z - 4 a z + a z + 23 z + ----- - 3 a 2 a a 5 5 2 4 4 4 6 4 5 z 8 z 5 3 5 5 5 > 4 a z - 8 a z + 3 a z - ---- - ---- - 15 a z - 7 a z + 5 a z - 3 a a 6 7 7 6 10 z 2 6 4 6 z z 7 3 7 8 > 19 z - ----- - 3 a z + 6 a z + -- - -- + 3 a z + 5 a z + 5 z + 2 3 a a a 8 9 2 z 2 8 z 9 > ---- + 3 a z + -- + a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 19]], Vassiliev[3][Knot[10, 19]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 19]][q, t] |
Out[20]= | 4 5 1 2 1 3 2 4 3 4 -- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 5 q q t q t q t q t q t q t q t q t 4 4 t 2 3 2 3 3 5 3 5 4 7 4 > ---- + --- + 3 q t + 2 q t + 4 q t + q t + 2 q t + q t + q t + 3 q q t 9 5 > q t |
In[21]:= | ColouredJones[Knot[10, 19], 2][q] |
Out[21]= | -17 3 2 5 13 9 11 29 19 18 44 25 26 11 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- - 16 15 14 13 12 11 10 9 8 7 6 5 q q q q q q q q q q q q 52 21 33 49 2 3 4 5 6 7 > -- + -- + -- - -- + 34 q - 36 q + q + 27 q - 20 q - 4 q + 16 q - 4 3 2 q q q q 8 9 10 11 12 13 > 7 q - 5 q + 6 q - q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1019 |
|