© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1021Visit 1021's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1021's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X7,16,8,17 X11,20,12,1 X15,6,16,7 X19,8,20,9 X9,18,10,19 X17,10,18,11 |
Gauss Code: | {-1, 4, -3, 1, -2, 7, -5, 8, -9, 10, -6, 3, -4, 2, -7, 5, -10, 9, -8, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 12 14 16 18 20 2 6 10 8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 7t-2 - 9t-1 + 9 - 9t + 7t2 - 2t3 |
Conway Polynomial: | 1 + z2 - 5z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n69, ...} |
Determinant and Signature: | {45, -4} |
Jones Polynomial: | q-10 - 2q-9 + 3q-8 - 6q-7 + 7q-6 - 7q-5 + 7q-4 - 5q-3 + 4q-2 - 2q-1 + 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-30 - 2q-22 - 2q-18 + q-14 + 3q-10 + q-6 + 1 |
HOMFLY-PT Polynomial: | a2 + 3a2z2 + a2z4 + 2a4 - 3a4z4 - a4z6 - 3a6 - 5a6z2 - 4a6z4 - a6z6 + a8 + 3a8z2 + a8z4 |
Kauffman Polynomial: | - a2 + 4a2z2 - 4a2z4 + a2z6 + 5a3z3 - 7a3z5 + 2a3z7 + 2a4 - 3a4z2 + 4a4z4 - 6a4z6 + 2a4z8 - 2a5z + 3a5z3 - 3a5z5 - a5z7 + a5z9 + 3a6 - 14a6z2 + 20a6z4 - 14a6z6 + 4a6z8 - a7z + 2a7z3 - a7z7 + a7z9 + a8 - 5a8z2 + 9a8z4 - 5a8z6 + 2a8z8 + 3a9z - 2a9z5 + 2a9z7 - 2a10z4 + 2a10z6 + 2a11z - 4a11z3 + 2a11z5 - 2a12z2 + a12z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1021. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-28 - 2q-27 + 4q-25 - 6q-24 + q-23 + 9q-22 - 14q-21 + 4q-20 + 19q-19 - 28q-18 + 6q-17 + 29q-16 - 38q-15 + 4q-14 + 35q-13 - 36q-12 - 2q-11 + 35q-10 - 27q-9 - 8q-8 + 28q-7 - 14q-6 - 10q-5 + 17q-4 - 4q-3 - 7q-2 + 6q-1 - 2q + q2 |
3 | q-54 - 2q-53 + q-51 + 3q-50 - 4q-49 - 2q-48 + 2q-47 + 5q-46 - 3q-45 - 4q-44 + 3q-43 + q-42 - 2q-41 + 2q-40 + 8q-39 - 14q-38 - 10q-37 + 15q-36 + 30q-35 - 33q-34 - 36q-33 + 33q-32 + 56q-31 - 37q-30 - 67q-29 + 34q-28 + 75q-27 - 25q-26 - 82q-25 + 19q-24 + 76q-23 - q-22 - 79q-21 - 7q-20 + 66q-19 + 27q-18 - 64q-17 - 32q-16 + 46q-15 + 47q-14 - 38q-13 - 46q-12 + 19q-11 + 49q-10 - 9q-9 - 39q-8 - 5q-7 + 34q-6 + 7q-5 - 19q-4 - 12q-3 + 13q-2 + 8q-1 - 5 - 6q + 3q2 + 2q3 - 2q5 + q6 |
4 | q-88 - 2q-87 + q-85 + 5q-83 - 8q-82 + q-80 - q-79 + 18q-78 - 16q-77 - 3q-76 - 5q-75 - 6q-74 + 43q-73 - 19q-72 - 4q-71 - 24q-70 - 27q-69 + 76q-68 - 4q-67 + 15q-66 - 55q-65 - 87q-64 + 97q-63 + 36q-62 + 84q-61 - 76q-60 - 197q-59 + 74q-58 + 71q-57 + 211q-56 - 46q-55 - 322q-54 - 8q-53 + 64q-52 + 346q-51 + 35q-50 - 392q-49 - 94q-48 + 7q-47 + 416q-46 + 121q-45 - 389q-44 - 133q-43 - 63q-42 + 410q-41 + 167q-40 - 336q-39 - 121q-38 - 125q-37 + 352q-36 + 183q-35 - 253q-34 - 82q-33 - 177q-32 + 256q-31 + 178q-30 - 145q-29 - 23q-28 - 215q-27 + 136q-26 + 145q-25 - 40q-24 + 53q-23 - 208q-22 + 23q-21 + 72q-20 + 18q-19 + 124q-18 - 144q-17 - 38q-16 - 10q-15 + 10q-14 + 144q-13 - 56q-12 - 31q-11 - 51q-10 - 27q-9 + 103q-8 - 3q-7 + 3q-6 - 38q-5 - 40q-4 + 45q-3 + 5q-2 + 16q-1 - 12 - 24q + 14q2 - q3 + 8q4 - q5 - 8q6 + 4q7 - q8 + 2q9 - 2q11 + q12 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 21]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], > X[7, 16, 8, 17], X[11, 20, 12, 1], X[15, 6, 16, 7], X[19, 8, 20, 9], > X[9, 18, 10, 19], X[17, 10, 18, 11]] |
In[3]:= | GaussCode[Knot[10, 21]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 7, -5, 8, -9, 10, -6, 3, -4, 2, -7, 5, -10, 9, -8, > 6] |
In[4]:= | DTCode[Knot[10, 21]] |
Out[4]= | DTCode[4, 12, 14, 16, 18, 20, 2, 6, 10, 8] |
In[5]:= | br = BR[Knot[10, 21]] |
Out[5]= | BR[4, {-1, -1, -2, 1, -2, -2, -2, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 21]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 21]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 21]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 21]][t] |
Out[10]= | 2 7 9 2 3 9 - -- + -- - - - 9 t + 7 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 21]][z] |
Out[11]= | 2 4 6 1 + z - 5 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 21], Knot[11, NonAlternating, 69]} |
In[13]:= | {KnotDet[Knot[10, 21]], KnotSignature[Knot[10, 21]]} |
Out[13]= | {45, -4} |
In[14]:= | Jones[Knot[10, 21]][q] |
Out[14]= | -10 2 3 6 7 7 7 5 4 2 1 + q - -- + -- - -- + -- - -- + -- - -- + -- - - 9 8 7 6 5 4 3 2 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 21]} |
In[16]:= | A2Invariant[Knot[10, 21]][q] |
Out[16]= | -30 2 2 -14 3 -6 1 + q - --- - --- + q + --- + q 22 18 10 q q q |
In[17]:= | HOMFLYPT[Knot[10, 21]][a, z] |
Out[17]= | 2 4 6 8 2 2 6 2 8 2 2 4 4 4 a + 2 a - 3 a + a + 3 a z - 5 a z + 3 a z + a z - 3 a z - 6 4 8 4 4 6 6 6 > 4 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 21]][a, z] |
Out[18]= | 2 4 6 8 5 7 9 11 2 2 4 2 -a + 2 a + 3 a + a - 2 a z - a z + 3 a z + 2 a z + 4 a z - 3 a z - 6 2 8 2 12 2 3 3 5 3 7 3 11 3 > 14 a z - 5 a z - 2 a z + 5 a z + 3 a z + 2 a z - 4 a z - 2 4 4 4 6 4 8 4 10 4 12 4 3 5 > 4 a z + 4 a z + 20 a z + 9 a z - 2 a z + a z - 7 a z - 5 5 9 5 11 5 2 6 4 6 6 6 8 6 > 3 a z - 2 a z + 2 a z + a z - 6 a z - 14 a z - 5 a z + 10 6 3 7 5 7 7 7 9 7 4 8 6 8 > 2 a z + 2 a z - a z - a z + 2 a z + 2 a z + 4 a z + 8 8 5 9 7 9 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 21]], Vassiliev[3][Knot[10, 21]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 21]][q, t] |
Out[20]= | 2 3 1 1 1 2 1 4 2 -- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 5 3 21 8 19 7 17 7 17 6 15 6 15 5 13 5 q q q t q t q t q t q t q t q t 3 4 4 3 3 4 2 3 t t > ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + -- + - + 13 4 11 4 11 3 9 3 9 2 7 2 7 5 3 q q t q t q t q t q t q t q t q t q 2 > q t |
In[21]:= | ColouredJones[Knot[10, 21], 2][q] |
Out[21]= | -28 2 4 6 -23 9 14 4 19 28 6 29 38 q - --- + --- - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + 27 25 24 22 21 20 19 18 17 16 15 q q q q q q q q q q q 4 35 36 2 35 27 8 28 14 10 17 4 7 6 > --- + --- - --- - --- + --- - -- - -- + -- - -- - -- + -- - -- - -- + - - 14 13 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q q q 2 > 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1021 |
|