© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10160Visit 10160's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10160's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X12,4,13,3 X7,14,8,15 X9,19,10,18 X19,7,20,6 X5,17,6,16 X17,11,18,10 X13,8,14,9 X15,1,16,20 X2,12,3,11 |
Gauss Code: | {1, -10, 2, -1, -6, 5, -3, 8, -4, 7, 10, -2, -8, 3, -9, 6, -7, 4, -5, 9} |
DT (Dowker-Thistlethwaite) Code: | 4 12 -16 -14 -18 2 -8 -20 -10 -6 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 4t-2 - 4t-1 + 3 - 4t + 4t2 - t3 |
Conway Polynomial: | 1 + 3z2 - 2z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n118, ...} |
Determinant and Signature: | {21, 4} |
Jones Polynomial: | 1 - 2q + 3q2 - 3q3 + 4q4 - 3q5 + 3q6 - 2q7 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | 1 + 2q10 + 2q14 - q22 - q26 |
HOMFLY-PT Polynomial: | - a-8 + a-6 + 3a-6z2 + a-6z4 - 3a-4z2 - 4a-4z4 - a-4z6 + a-2 + 3a-2z2 + a-2z4 |
Kauffman Polynomial: | 2a-9z - a-8 + a-8z2 + a-8z4 + 3a-7z3 - 3a-7z5 + a-7z7 - a-6 + 2a-6z4 - 3a-6z6 + a-6z8 - 3a-5z + 10a-5z3 - 11a-5z5 + 3a-5z7 + 3a-4z2 - 3a-4z4 - 2a-4z6 + a-4z8 - a-3z + 7a-3z3 - 8a-3z5 + 2a-3z7 - a-2 + 4a-2z2 - 4a-2z4 + a-2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 6} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 10160. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-2 - 2q-1 - 1 + 6q - 3q2 - 6q3 + 9q4 - 9q6 + 7q7 + 4q8 - 9q9 + 3q10 + 7q11 - 7q12 - 2q13 + 8q14 - 4q15 - 4q16 + 4q17 - 2q19 + q21 |
3 | q-6 - 2q-5 - q-4 + 2q-3 + 5q-2 - 2q-1 - 9 - q + 11q2 + 6q3 - 9q4 - 11q5 + 6q6 + 11q7 + 3q8 - 10q9 - 7q10 + 2q11 + 13q12 + 4q13 - 13q14 - 14q15 + 16q16 + 19q17 - 12q18 - 29q19 + 15q20 + 32q21 - 12q22 - 40q23 + 14q24 + 40q25 - 9q26 - 44q27 + 5q28 + 40q29 + 2q30 - 34q31 - 7q32 + 25q33 + 8q34 - 11q35 - 11q36 + 7q37 + 4q38 - 2q40 |
4 | q-12 - 2q-11 - q-10 + 2q-9 + q-8 + 6q-7 - 6q-6 - 7q-5 - 2q-4 - q-3 + 22q-2 + q-1 - 7 - 12q - 21q2 + 21q3 + 9q4 + 15q5 + 5q6 - 33q7 - 3q8 - 16q9 + 16q10 + 41q11 + q12 - 2q13 - 55q14 - 31q15 + 45q16 + 47q17 + 43q18 - 57q19 - 90q20 + 4q21 + 63q22 + 99q23 - 21q24 - 125q25 - 47q26 + 52q27 + 136q28 + 22q29 - 139q30 - 86q31 + 40q32 + 157q33 + 53q34 - 150q35 - 114q36 + 33q37 + 173q38 + 79q39 - 154q40 - 138q41 + 17q42 + 173q43 + 107q44 - 124q45 - 142q46 - 24q47 + 131q48 + 120q49 - 58q50 - 101q51 - 53q52 + 54q53 + 82q54 - 2q55 - 35q56 - 38q57 + 2q58 + 27q59 + 7q60 - 8q62 - 4q63 + 2q64 + q66 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 160]] |
Out[2]= | PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[7, 14, 8, 15], X[9, 19, 10, 18], > X[19, 7, 20, 6], X[5, 17, 6, 16], X[17, 11, 18, 10], X[13, 8, 14, 9], > X[15, 1, 16, 20], X[2, 12, 3, 11]] |
In[3]:= | GaussCode[Knot[10, 160]] |
Out[3]= | GaussCode[1, -10, 2, -1, -6, 5, -3, 8, -4, 7, 10, -2, -8, 3, -9, 6, -7, 4, -5, > 9] |
In[4]:= | DTCode[Knot[10, 160]] |
Out[4]= | DTCode[4, 12, -16, -14, -18, 2, -8, -20, -10, -6] |
In[5]:= | br = BR[Knot[10, 160]] |
Out[5]= | BR[4, {1, 1, 1, 2, 1, 1, -3, 2, -1, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 160]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 160]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 160]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 160]][t] |
Out[10]= | -3 4 4 2 3 3 - t + -- - - - 4 t + 4 t - t 2 t t |
In[11]:= | Conway[Knot[10, 160]][z] |
Out[11]= | 2 4 6 1 + 3 z - 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 160], Knot[11, NonAlternating, 118]} |
In[13]:= | {KnotDet[Knot[10, 160]], KnotSignature[Knot[10, 160]]} |
Out[13]= | {21, 4} |
In[14]:= | Jones[Knot[10, 160]][q] |
Out[14]= | 2 3 4 5 6 7 1 - 2 q + 3 q - 3 q + 4 q - 3 q + 3 q - 2 q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 160]} |
In[16]:= | A2Invariant[Knot[10, 160]][q] |
Out[16]= | 10 14 22 26 1 + 2 q + 2 q - q - q |
In[17]:= | HOMFLYPT[Knot[10, 160]][a, z] |
Out[17]= | 2 2 2 4 4 4 6 -8 -6 -2 3 z 3 z 3 z z 4 z z z -a + a + a + ---- - ---- + ---- + -- - ---- + -- - -- 6 4 2 6 4 2 4 a a a a a a a |
In[18]:= | Kauffman[Knot[10, 160]][a, z] |
Out[18]= | 2 2 2 3 3 3 -8 -6 -2 2 z 3 z z z 3 z 4 z 3 z 10 z 7 z -a - a - a + --- - --- - -- + -- + ---- + ---- + ---- + ----- + ---- + 9 5 3 8 4 2 7 5 3 a a a a a a a a a 4 4 4 4 5 5 5 6 6 6 7 z 2 z 3 z 4 z 3 z 11 z 8 z 3 z 2 z z z > -- + ---- - ---- - ---- - ---- - ----- - ---- - ---- - ---- + -- + -- + 8 6 4 2 7 5 3 6 4 2 7 a a a a a a a a a a a 7 7 8 8 3 z 2 z z z > ---- + ---- + -- + -- 5 3 6 4 a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 160]], Vassiliev[3][Knot[10, 160]]} |
Out[19]= | {3, 6} |
In[20]:= | Kh[Knot[10, 160]][q, t] |
Out[20]= | 3 3 5 1 q q 5 7 7 2 9 2 9 3 2 q + 2 q + ---- + - + -- + 2 q t + q t + 2 q t + 2 q t + q t + 2 t t q t 11 3 11 4 13 4 15 5 > 2 q t + 2 q t + q t + 2 q t |
In[21]:= | ColouredJones[Knot[10, 160], 2][q] |
Out[21]= | -2 2 2 3 4 6 7 8 9 10 -1 + q - - + 6 q - 3 q - 6 q + 9 q - 9 q + 7 q + 4 q - 9 q + 3 q + q 11 12 13 14 15 16 17 19 21 > 7 q - 7 q - 2 q + 8 q - 4 q - 4 q + 4 q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10160 |
|