© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10159Visit 10159's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10159's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X3948 X18,11,19,12 X20,13,1,14 X15,2,16,3 X17,5,18,4 X12,19,13,20 X5,10,6,11 X7,15,8,14 X9,16,10,17 |
Gauss Code: | {-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, -3, 7, -4} |
DT (Dowker-Thistlethwaite) Code: | 6 8 10 14 16 -18 -20 2 4 -12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 4t-2 + 9t-1 - 11 + 9t - 4t2 + t3 |
Conway Polynomial: | 1 + 2z2 + 2z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {39, -2} |
Jones Polynomial: | - q-8 + 3q-7 - 5q-6 + 6q-5 - 7q-4 + 7q-3 - 5q-2 + 4q-1 - 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-24 + q-22 - q-20 + q-16 - 2q-14 + q-12 - q-10 + 2q-8 + 2q-6 + 2q-2 - 1 |
HOMFLY-PT Polynomial: | a2 - a2z2 - a2z4 + a4 + 5a4z2 + 4a4z4 + a4z6 - a6 - 2a6z2 - a6z4 |
Kauffman Polynomial: | az3 - a2 - 2a2z2 + 4a2z4 + a3z + a3z5 + a3z7 + a4 - 4a4z2 + 3a4z4 + a4z8 + a5z - 5a5z5 + 4a5z7 + a6 + a6z2 - 8a6z4 + 3a6z6 + a6z8 + a7z - a7z3 - 5a7z5 + 3a7z7 + 3a8z2 - 7a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10159. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 3q-22 + 10q-20 - 11q-19 - 9q-18 + 28q-17 - 13q-16 - 27q-15 + 42q-14 - 6q-13 - 43q-12 + 46q-11 + 3q-10 - 49q-9 + 39q-8 + 10q-7 - 39q-6 + 22q-5 + 11q-4 - 19q-3 + 6q-2 + 5q-1 - 3 |
3 | - q-45 + 3q-44 - 5q-42 - 5q-41 + 11q-40 + 16q-39 - 17q-38 - 33q-37 + 13q-36 + 58q-35 + 3q-34 - 84q-33 - 29q-32 + 99q-31 + 68q-30 - 105q-29 - 109q-28 + 98q-27 + 148q-26 - 84q-25 - 178q-24 + 62q-23 + 205q-22 - 42q-21 - 220q-20 + 21q-19 + 225q-18 + 2q-17 - 224q-16 - 20q-15 + 202q-14 + 46q-13 - 180q-12 - 54q-11 + 133q-10 + 68q-9 - 95q-8 - 58q-7 + 48q-6 + 53q-5 - 25q-4 - 27q-3 + q-2 + 16q-1 + 3 - 5q - q2 - q3 + q4 |
4 | q-74 - 3q-73 + 5q-71 + 5q-69 - 18q-68 - 9q-67 + 17q-66 + 15q-65 + 42q-64 - 51q-63 - 66q-62 - 7q-61 + 38q-60 + 173q-59 - 17q-58 - 144q-57 - 156q-56 - 65q-55 + 347q-54 + 186q-53 - 68q-52 - 344q-51 - 387q-50 + 345q-49 + 441q-48 + 259q-47 - 355q-46 - 783q-45 + 92q-44 + 541q-43 + 675q-42 - 150q-41 - 1046q-40 - 255q-39 + 463q-38 + 996q-37 + 121q-36 - 1145q-35 - 539q-34 + 322q-33 + 1177q-32 + 347q-31 - 1133q-30 - 734q-29 + 171q-28 + 1234q-27 + 526q-26 - 1002q-25 - 844q-24 - 27q-23 + 1123q-22 + 668q-21 - 700q-20 - 814q-19 - 263q-18 + 801q-17 + 688q-16 - 288q-15 - 575q-14 - 396q-13 + 356q-12 + 499q-11 + 26q-10 - 232q-9 - 311q-8 + 36q-7 + 209q-6 + 94q-5 - 11q-4 - 119q-3 - 43q-2 + 31q-1 + 33 + 23q - 13q2 - 13q3 - 3q4 + 4q6 + q7 - q8 |
5 | - q-110 + 3q-109 - 5q-107 + 2q-104 + 11q-103 + 9q-102 - 17q-101 - 24q-100 - 15q-99 + 5q-98 + 50q-97 + 68q-96 + 16q-95 - 87q-94 - 137q-93 - 92q-92 + 62q-91 + 244q-90 + 264q-89 + 38q-88 - 311q-87 - 488q-86 - 300q-85 + 227q-84 + 726q-83 + 722q-82 + 67q-81 - 829q-80 - 1201q-79 - 632q-78 + 638q-77 + 1642q-76 + 1400q-75 - 128q-74 - 1830q-73 - 2221q-72 - 730q-71 + 1675q-70 + 2958q-69 + 1779q-68 - 1159q-67 - 3436q-66 - 2885q-65 + 343q-64 + 3622q-63 + 3895q-62 + 619q-61 - 3509q-60 - 4729q-59 - 1607q-58 + 3223q-57 + 5318q-56 + 2517q-55 - 2818q-54 - 5736q-53 - 3288q-52 + 2420q-51 + 5990q-50 + 3900q-49 - 2023q-48 - 6154q-47 - 4403q-46 + 1674q-45 + 6246q-44 + 4800q-43 - 1325q-42 - 6232q-41 - 5161q-40 + 908q-39 + 6153q-38 + 5457q-37 - 445q-36 - 5842q-35 - 5683q-34 - 197q-33 + 5383q-32 + 5778q-31 + 837q-30 - 4590q-29 - 5639q-28 - 1581q-27 + 3640q-26 + 5219q-25 + 2129q-24 - 2455q-23 - 4499q-22 - 2518q-21 + 1345q-20 + 3528q-19 + 2500q-18 - 304q-17 - 2453q-16 - 2264q-15 - 313q-14 + 1430q-13 + 1694q-12 + 681q-11 - 624q-10 - 1148q-9 - 657q-8 + 138q-7 + 581q-6 + 512q-5 + 95q-4 - 238q-3 - 295q-2 - 124q-1 + 52 + 120q + 86q2 + 16q3 - 38q4 - 41q5 - 8q6 + q7 + 9q8 + 8q9 - 3q11 |
6 | q-153 - 3q-152 + 5q-150 - 7q-147 + 5q-146 - 11q-145 - 9q-144 + 26q-143 + 15q-142 + 15q-141 - 23q-140 - 4q-139 - 63q-138 - 66q-137 + 46q-136 + 88q-135 + 140q-134 + 44q-133 + 50q-132 - 227q-131 - 363q-130 - 185q-129 + 43q-128 + 424q-127 + 499q-126 + 677q-125 - 39q-124 - 794q-123 - 1126q-122 - 990q-121 - 93q-120 + 876q-119 + 2310q-118 + 1802q-117 + 344q-116 - 1634q-115 - 3146q-114 - 3073q-113 - 1394q-112 + 2753q-111 + 4796q-110 + 4799q-109 + 1709q-108 - 2972q-107 - 6979q-106 - 7726q-105 - 2066q-104 + 4246q-103 + 9724q-102 + 9611q-101 + 3758q-100 - 6123q-99 - 13892q-98 - 11789q-97 - 3732q-96 + 8868q-95 + 16740q-94 + 15408q-93 + 2574q-92 - 13648q-91 - 20316q-90 - 16295q-89 + 248q-88 + 17400q-87 + 25517q-86 + 15291q-85 - 6197q-84 - 22755q-83 - 27089q-82 - 11680q-81 + 11841q-80 + 30067q-79 + 26096q-78 + 3792q-77 - 20007q-76 - 32940q-75 - 21635q-74 + 4490q-73 + 30215q-72 + 32552q-71 + 11907q-70 - 15869q-69 - 35025q-68 - 27854q-67 - 1280q-66 + 28945q-65 + 35796q-64 + 17120q-63 - 12640q-62 - 35634q-61 - 31543q-60 - 5207q-59 + 27646q-58 + 37694q-57 + 20901q-56 - 9898q-55 - 35586q-54 - 34412q-53 - 9057q-52 + 25382q-51 + 38699q-50 + 24928q-49 - 5576q-48 - 33554q-47 - 36622q-46 - 14457q-45 + 19851q-44 + 37062q-43 + 28935q-42 + 1815q-41 - 26993q-40 - 35841q-39 - 20547q-38 + 9877q-37 + 29961q-36 + 29799q-35 + 10547q-34 - 15195q-33 - 28939q-32 - 23264q-31 - 1647q-30 + 17301q-29 + 24091q-28 + 15477q-27 - 2300q-26 - 16515q-25 - 18998q-24 - 8584q-23 + 4322q-22 + 13151q-21 + 13055q-20 + 5066q-19 - 4600q-18 - 9913q-17 - 7902q-16 - 2521q-15 + 3413q-14 + 6313q-13 + 4970q-12 + 1087q-11 - 2456q-10 - 3456q-9 - 2681q-8 - 609q-7 + 1294q-6 + 1951q-5 + 1300q-4 + 198q-3 - 523q-2 - 856q-1 - 630 - 134q + 253q2 + 324q3 + 209q4 + 82q5 - 58q6 - 119q7 - 73q8 - 15q9 + 12q10 + 17q11 + 18q12 + 12q13 - 6q14 - 4q15 - q18 - q19 + q20 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 159]] |
Out[2]= | PD[X[1, 6, 2, 7], X[3, 9, 4, 8], X[18, 11, 19, 12], X[20, 13, 1, 14], > X[15, 2, 16, 3], X[17, 5, 18, 4], X[12, 19, 13, 20], X[5, 10, 6, 11], > X[7, 15, 8, 14], X[9, 16, 10, 17]] |
In[3]:= | GaussCode[Knot[10, 159]] |
Out[3]= | GaussCode[-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, -3, 7, > -4] |
In[4]:= | DTCode[Knot[10, 159]] |
Out[4]= | DTCode[6, 8, 10, 14, 16, -18, -20, 2, 4, -12] |
In[5]:= | br = BR[Knot[10, 159]] |
Out[5]= | BR[3, {-1, -1, -1, -2, 1, -2, 1, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 159]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 159]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 159]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 159]][t] |
Out[10]= | -3 4 9 2 3 -11 + t - -- + - + 9 t - 4 t + t 2 t t |
In[11]:= | Conway[Knot[10, 159]][z] |
Out[11]= | 2 4 6 1 + 2 z + 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 159]} |
In[13]:= | {KnotDet[Knot[10, 159]], KnotSignature[Knot[10, 159]]} |
Out[13]= | {39, -2} |
In[14]:= | Jones[Knot[10, 159]][q] |
Out[14]= | -8 3 5 6 7 7 5 4 -1 - q + -- - -- + -- - -- + -- - -- + - 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 159]} |
In[16]:= | A2Invariant[Knot[10, 159]][q] |
Out[16]= | -24 -22 -20 -16 2 -12 -10 2 2 2 -1 - q + q - q + q - --- + q - q + -- + -- + -- 14 8 6 2 q q q q |
In[17]:= | HOMFLYPT[Knot[10, 159]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 4 6 a + a - a - a z + 5 a z - 2 a z - a z + 4 a z - a z + a z |
In[18]:= | Kauffman[Knot[10, 159]][a, z] |
Out[18]= | 2 4 6 3 5 7 9 2 2 4 2 6 2 -a + a + a + a z + a z + a z + a z - 2 a z - 4 a z + a z + 8 2 3 7 3 9 3 2 4 4 4 6 4 8 4 > 3 a z + a z - a z - 2 a z + 4 a z + 3 a z - 8 a z - 7 a z + 3 5 5 5 7 5 9 5 6 6 8 6 3 7 5 7 > a z - 5 a z - 5 a z + a z + 3 a z + 3 a z + a z + 4 a z + 7 7 4 8 6 8 > 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 159]], Vassiliev[3][Knot[10, 159]]} |
Out[19]= | {2, -3} |
In[20]:= | Kh[Knot[10, 159]][q, t] |
Out[20]= | 2 3 1 2 1 3 2 3 3 4 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 3 3 4 2 3 > ----- + ----- + ----- + ---- + ---- + q t 7 3 7 2 5 2 5 3 q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 159], 2][q] |
Out[21]= | -23 3 10 11 9 28 13 27 42 6 43 46 -3 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- + 22 20 19 18 17 16 15 14 13 12 11 q q q q q q q q q q q 3 49 39 10 39 22 11 19 6 5 > --- - -- + -- + -- - -- + -- + -- - -- + -- + - 10 9 8 7 6 5 4 3 2 q q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10159 |
|