© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10156Visit 10156's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10156's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X12,4,13,3 X7,14,8,15 X18,9,19,10 X6,19,7,20 X16,5,17,6 X10,17,11,18 X13,8,14,9 X20,15,1,16 X2,12,3,11 |
Gauss Code: | {1, -10, 2, -1, 6, -5, -3, 8, 4, -7, 10, -2, -8, 3, 9, -6, 7, -4, 5, -9} |
DT (Dowker-Thistlethwaite) Code: | 4 12 16 -14 18 2 -8 20 10 6 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 4t-2 + 8t-1 - 9 + 8t - 4t2 + t3 |
Conway Polynomial: | 1 + z2 + 2z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {816, K11n15, K11n56, K11n58, ...} |
Determinant and Signature: | {35, -2} |
Jones Polynomial: | - q-6 + 3q-5 - 5q-4 + 6q-3 - 6q-2 + 6q-1 - 4 + 3q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {816, ...} |
A2 (sl(3)) Invariant: | - q-18 + q-16 - q-14 + q-10 - q-8 + 2q-6 - q-4 + 2q-2 + 1 + q4 - q6 |
HOMFLY-PT Polynomial: | - 2z2 - z4 + 2a2 + 5a2z2 + 4a2z4 + a2z6 - a4 - 2a4z2 - a4z4 |
Kauffman Polynomial: | - 2a-1z3 + a-1z5 + 4z2 - 8z4 + 3z6 - az + 3az3 - 7az5 + 3az7 - 2a2 + 7a2z2 - 9a2z4 + 2a2z6 + a2z8 - 2a3z + 8a3z3 - 9a3z5 + 4a3z7 - a4 + a4z2 + 2a4z4 - a4z6 + a4z8 - 2a5z + 4a5z3 - a5z5 + a5z7 - 2a6z2 + 3a6z4 - a7z + a7z3 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10156. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | - 2q-16 + 4q-15 + 3q-14 - 14q-13 + 9q-12 + 15q-11 - 30q-10 + 9q-9 + 29q-8 - 38q-7 + 4q-6 + 35q-5 - 34q-4 - 4q-3 + 33q-2 - 21q-1 - 10 + 23q - 7q2 - 10q3 + 9q4 - 3q6 + q7 |
3 | q-34 - q-33 - q-32 - 4q-31 + 5q-30 + 11q-29 - 3q-28 - 23q-27 - 9q-26 + 41q-25 + 26q-24 - 54q-23 - 53q-22 + 59q-21 + 87q-20 - 59q-19 - 115q-18 + 51q-17 + 137q-16 - 38q-15 - 151q-14 + 24q-13 + 154q-12 - 7q-11 - 154q-10 - 6q-9 + 140q-8 + 27q-7 - 128q-6 - 39q-5 + 101q-4 + 61q-3 - 81q-2 - 63q-1 + 46 + 69q - 22q2 - 58q3 - q4 + 44q5 + 12q6 - 25q7 - 16q8 + 13q9 + 10q10 - 4q11 - 5q12 + 3q14 - q15 |
4 | - q-56 + q-55 + 3q-54 - 2q-52 - 11q-51 - 7q-50 + 19q-49 + 25q-48 + 16q-47 - 44q-46 - 78q-45 + 8q-44 + 86q-43 + 135q-42 - 22q-41 - 228q-40 - 132q-39 + 83q-38 + 357q-37 + 163q-36 - 332q-35 - 378q-34 - 89q-33 + 533q-32 + 458q-31 - 289q-30 - 572q-29 - 348q-28 + 566q-27 + 689q-26 - 159q-25 - 624q-24 - 549q-23 + 498q-22 + 782q-21 - 38q-20 - 572q-19 - 646q-18 + 390q-17 + 763q-16 + 66q-15 - 453q-14 - 677q-13 + 238q-12 + 667q-11 + 180q-10 - 267q-9 - 646q-8 + 34q-7 + 477q-6 + 273q-5 - 21q-4 - 510q-3 - 148q-2 + 208q-1 + 253 + 183q - 268q2 - 189q3 - 26q4 + 108q5 + 222q6 - 50q7 - 89q8 - 96q9 - 25q10 + 121q11 + 27q12 + 5q13 - 47q14 - 46q15 + 31q16 + 11q17 + 17q18 - 6q19 - 17q20 + 4q21 + 5q23 - 3q25 + q26 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 156]] |
Out[2]= | PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[7, 14, 8, 15], X[18, 9, 19, 10], > X[6, 19, 7, 20], X[16, 5, 17, 6], X[10, 17, 11, 18], X[13, 8, 14, 9], > X[20, 15, 1, 16], X[2, 12, 3, 11]] |
In[3]:= | GaussCode[Knot[10, 156]] |
Out[3]= | GaussCode[1, -10, 2, -1, 6, -5, -3, 8, 4, -7, 10, -2, -8, 3, 9, -6, 7, -4, 5, > -9] |
In[4]:= | DTCode[Knot[10, 156]] |
Out[4]= | DTCode[4, 12, 16, -14, 18, 2, -8, 20, 10, 6] |
In[5]:= | br = BR[Knot[10, 156]] |
Out[5]= | BR[4, {-1, -1, -1, 2, 1, 1, -3, -2, 1, -2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 156]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 156]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 156]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 156]][t] |
Out[10]= | -3 4 8 2 3 -9 + t - -- + - + 8 t - 4 t + t 2 t t |
In[11]:= | Conway[Knot[10, 156]][z] |
Out[11]= | 2 4 6 1 + z + 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 16], Knot[10, 156], Knot[11, NonAlternating, 15], > Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]} |
In[13]:= | {KnotDet[Knot[10, 156]], KnotSignature[Knot[10, 156]]} |
Out[13]= | {35, -2} |
In[14]:= | Jones[Knot[10, 156]][q] |
Out[14]= | -6 3 5 6 6 6 2 -4 - q + -- - -- + -- - -- + - + 3 q - q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 16], Knot[10, 156]} |
In[16]:= | A2Invariant[Knot[10, 156]][q] |
Out[16]= | -18 -16 -14 -10 -8 2 -4 2 4 6 1 - q + q - q + q - q + -- - q + -- + q - q 6 2 q q |
In[17]:= | HOMFLYPT[Knot[10, 156]][a, z] |
Out[17]= | 2 4 2 2 2 4 2 4 2 4 4 4 2 6 2 a - a - 2 z + 5 a z - 2 a z - z + 4 a z - a z + a z |
In[18]:= | Kauffman[Knot[10, 156]][a, z] |
Out[18]= | 2 4 3 5 7 2 2 2 4 2 6 2 -2 a - a - a z - 2 a z - 2 a z - a z + 4 z + 7 a z + a z - 2 a z - 3 2 z 3 3 3 5 3 7 3 4 2 4 4 4 > ---- + 3 a z + 8 a z + 4 a z + a z - 8 z - 9 a z + 2 a z + a 5 6 4 z 5 3 5 5 5 6 2 6 4 6 7 > 3 a z + -- - 7 a z - 9 a z - a z + 3 z + 2 a z - a z + 3 a z + a 3 7 5 7 2 8 4 8 > 4 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 156]], Vassiliev[3][Knot[10, 156]]} |
Out[19]= | {1, -1} |
In[20]:= | Kh[Knot[10, 156]][q, t] |
Out[20]= | 3 4 1 2 1 3 2 3 3 3 -- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 5 q q t q t q t q t q t q t q t q t 3 2 t 2 3 2 5 3 > ---- + --- + 2 q t + q t + 2 q t + q t 3 q q t |
In[21]:= | ColouredJones[Knot[10, 156], 2][q] |
Out[21]= | 2 4 3 14 9 15 30 9 29 38 4 35 34 -10 - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + -- + -- - -- - 16 15 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q q q 4 33 21 2 3 4 6 7 > -- + -- - -- + 23 q - 7 q - 10 q + 9 q - 3 q + q 3 2 q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10156 |
|