© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10153Visit 10153's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10153's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X8493 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X2837 |
Gauss Code: | {1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 12 2 -16 6 -18 -20 -10 -14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - t-2 - t-1 + 3 - t - t2 + t3 |
Conway Polynomial: | 1 + 4z2 + 5z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {1, 0} |
Jones Polynomial: | - q-5 + q-4 - q-3 + q-2 + 1 + q - q2 + q3 - q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 - q-12 - q-10 + 2q-4 + 2q-2 + 3 + 2q2 - q8 - q10 - q12 |
HOMFLY-PT Polynomial: | - 3a-2 - 4a-2z2 - a-2z4 + 6 + 10z2 + 6z4 + z6 - a2 - a2z2 - a4 - a4z2 |
Kauffman Polynomial: | - 5a-3z + 10a-3z3 - 6a-3z5 + a-3z7 + 3a-2 - 7a-2z2 + 10a-2z4 - 6a-2z6 + a-2z8 - 10a-1z + 22a-1z3 - 13a-1z5 + 2a-1z7 + 6 - 12z2 + 14z4 - 7z6 + z8 - 6az + 12az3 - 7az5 + az7 + a2 - 2a2z2 + 2a3z - 4a3z3 + a3z5 - a4 + 3a4z2 - 4a4z4 + a4z6 + 3a5z - 4a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {4, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10153. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - q-14 - q-13 + 2q-12 - 2q-10 - q-9 + 2q-8 + q-7 - 5q-6 + 3q-5 + 4q-4 - 7q-3 + 4q-2 + 4q-1 - 6 + 3q + 4q2 - 5q3 + q4 + 2q5 - 2q6 + q7 - q8 - q9 + 2q10 - q11 - q12 + q13 |
3 | - q-30 + q-29 + q-28 - 2q-26 - q-25 + 2q-24 + 2q-23 + q-22 - 2q-21 - 3q-20 - q-19 + 4q-18 + 5q-17 - 4q-16 - 9q-15 + q-14 + 11q-13 + 2q-12 - 13q-11 - 4q-10 + 13q-9 + 5q-8 - 13q-7 - 4q-6 + 12q-5 + 5q-4 - 12q-3 - 4q-2 + 10q-1 + 7 - 8q - 5q2 + 4q3 + 6q4 + q5 - 6q6 - 4q7 + 2q8 + 7q9 - 7q11 - 3q12 + 5q13 + 3q14 - 2q15 - 3q16 + 2q17 - q19 + 2q21 - 2q23 + q25 + q26 - q27 |
4 | q-50 - q-49 - q-48 + 3q-45 - q-43 - 2q-42 - 3q-41 + q-40 + 2q-39 + 3q-38 + 3q-37 - 6q-35 - 5q-34 - 4q-33 + 7q-32 + 15q-31 + 2q-30 - 4q-29 - 23q-28 - 9q-27 + 16q-26 + 19q-25 + 19q-24 - 26q-23 - 29q-22 - 5q-21 + 21q-20 + 44q-19 - 15q-18 - 36q-17 - 21q-16 + 16q-15 + 53q-14 - 8q-13 - 35q-12 - 26q-11 + 14q-10 + 55q-9 - 7q-8 - 36q-7 - 26q-6 + 14q-5 + 54q-4 - 4q-3 - 34q-2 - 28q-1 + 10 + 48q + 7q2 - 24q3 - 29q4 - 5q5 + 32q6 + 20q7 - 5q8 - 22q9 - 17q10 + 7q11 + 17q12 + 8q13 - 3q14 - 10q15 - 8q16 + 2q17 + q18 + 6q19 + 4q20 - q22 - 10q23 - q24 + 3q25 + 6q26 + 5q27 - 5q28 - 3q29 - 3q30 + 3q31 + 2q32 - q33 - q35 + 3q36 - q37 - q38 - q39 - q40 + 3q41 - q44 - q45 + q46 |
5 | - q-75 + q-74 + q-73 - q-70 - 2q-69 - q-68 + 2q-67 + 2q-66 + 2q-65 + q-64 - 4q-62 - 4q-61 - q-60 - 2q-59 + 2q-58 + 8q-57 + 7q-56 + 2q-55 - q-54 - 13q-53 - 17q-52 - 5q-51 + 6q-50 + 21q-49 + 25q-48 + 10q-47 - 16q-46 - 32q-45 - 33q-44 - 8q-43 + 29q-42 + 48q-41 + 39q-40 - 4q-39 - 49q-38 - 65q-37 - 32q-36 + 33q-35 + 78q-34 + 67q-33 - 5q-32 - 79q-31 - 92q-30 - 25q-29 + 70q-28 + 106q-27 + 48q-26 - 60q-25 - 114q-24 - 59q-23 + 52q-22 + 113q-21 + 67q-20 - 48q-19 - 118q-18 - 65q-17 + 50q-16 + 112q-15 + 68q-14 - 47q-13 - 118q-12 - 65q-11 + 51q-10 + 111q-9 + 68q-8 - 46q-7 - 117q-6 - 66q-5 + 47q-4 + 106q-3 + 73q-2 - 33q-1 - 108 - 72q + 22q2 + 87q3 + 83q4 + 4q5 - 75q6 - 80q7 - 23q8 + 40q9 + 74q10 + 49q11 - 14q12 - 53q13 - 55q14 - 20q15 + 25q16 + 49q17 + 37q18 + 5q19 - 29q20 - 41q21 - 23q22 + 2q23 + 26q24 + 31q25 + 13q26 - 6q27 - 20q28 - 19q29 - 8q30 + 6q31 + 11q32 + 11q33 + 4q34 - 3q36 - 6q37 - 5q38 - 4q39 - q40 + 4q41 + 8q42 + 5q43 - 3q45 - 7q46 - 5q47 + 2q48 + 4q49 + 2q50 + 2q51 - q52 - 3q53 + q54 + q55 - q57 - q58 - q59 + q60 + q61 + 2q62 - 2q64 - q65 + q68 + q69 - q70 |
6 | q-105 - q-104 - q-103 + q-100 + 3q-98 - 2q-96 - 2q-95 - 2q-94 - q-93 - q-92 + 3q-91 + 3q-90 + 4q-89 + 2q-88 + q-87 - 2q-86 - 5q-85 - 8q-84 - 7q-83 - 2q-82 + 3q-81 + 10q-80 + 16q-79 + 18q-78 - 8q-76 - 22q-75 - 28q-74 - 27q-73 - q-72 + 30q-71 + 33q-70 + 47q-69 + 28q-68 - 4q-67 - 58q-66 - 64q-65 - 54q-64 - 32q-63 + 39q-62 + 92q-61 + 109q-60 + 51q-59 - q-58 - 97q-57 - 155q-56 - 123q-55 - 15q-54 + 109q-53 + 173q-52 + 195q-51 + 55q-50 - 116q-49 - 241q-48 - 215q-47 - 82q-46 + 121q-45 + 300q-44 + 253q-43 + 69q-42 - 194q-41 - 305q-40 - 269q-39 - 19q-38 + 270q-37 + 337q-36 + 208q-35 - 106q-34 - 298q-33 - 343q-32 - 93q-31 + 226q-30 + 346q-29 + 250q-28 - 70q-27 - 285q-26 - 359q-25 - 102q-24 + 213q-23 + 343q-22 + 255q-21 - 65q-20 - 282q-19 - 363q-18 - 101q-17 + 213q-16 + 343q-15 + 255q-14 - 65q-13 - 281q-12 - 362q-11 - 102q-10 + 208q-9 + 341q-8 + 258q-7 - 54q-6 - 273q-5 - 361q-4 - 116q-3 + 175q-2 + 325q-1 + 276 - q - 225q2 - 352q3 - 165q4 + 75q5 + 262q6 + 293q7 + 110q8 - 100q9 - 287q10 - 214q11 - 85q12 + 110q13 + 236q14 + 200q15 + 72q16 - 119q17 - 159q18 - 184q19 - 73q20 + 61q21 + 147q22 + 146q23 + 56q24 + 8q25 - 106q26 - 117q27 - 84q28 - 8q29 + 44q30 + 69q31 + 99q32 + 32q33 - 8q34 - 50q35 - 54q36 - 59q37 - 28q38 + 30q39 + 36q40 + 46q41 + 33q42 + 16q43 - 24q44 - 38q45 - 25q46 - 20q47 - 5q48 + 16q49 + 28q50 + 17q51 + 5q52 + 3q53 - 6q54 - 16q55 - 11q56 - 3q57 - 5q59 + 8q60 + 10q61 + 4q62 + 3q63 + 3q64 - 13q66 - 5q67 - 2q68 - q69 + q70 + 9q71 + 6q72 - 3q73 - 2q75 - 2q76 - 4q77 + 4q78 + q79 - 2q80 - q84 + 4q85 - q88 - q89 - 2q90 - q91 + 3q92 + q94 - q97 - q98 + q99 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 153]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[13, 18, 14, 19], > X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], X[19, 14, 20, 15], > X[6, 12, 7, 11], X[2, 8, 3, 7]] |
In[3]:= | GaussCode[Knot[10, 153]] |
Out[3]= | GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, > 7] |
In[4]:= | DTCode[Knot[10, 153]] |
Out[4]= | DTCode[4, 8, 12, 2, -16, 6, -18, -20, -10, -14] |
In[5]:= | br = BR[Knot[10, 153]] |
Out[5]= | BR[4, {-1, -1, -1, -2, -1, -1, 3, 2, 2, 2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 153]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 153]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 153]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 153]][t] |
Out[10]= | -3 -2 1 2 3 3 + t - t - - - t - t + t t |
In[11]:= | Conway[Knot[10, 153]][z] |
Out[11]= | 2 4 6 1 + 4 z + 5 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 153]} |
In[13]:= | {KnotDet[Knot[10, 153]], KnotSignature[Knot[10, 153]]} |
Out[13]= | {1, 0} |
In[14]:= | Jones[Knot[10, 153]][q] |
Out[14]= | -5 -4 -3 -2 2 3 4 1 - q + q - q + q + q - q + q - q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 153]} |
In[16]:= | A2Invariant[Knot[10, 153]][q] |
Out[16]= | -16 -12 -10 2 2 2 8 10 12 3 - q - q - q + -- + -- + 2 q - q - q - q 4 2 q q |
In[17]:= | HOMFLYPT[Knot[10, 153]][a, z] |
Out[17]= | 2 4 3 2 4 2 4 z 2 2 4 2 4 z 6 6 - -- - a - a + 10 z - ---- - a z - a z + 6 z - -- + z 2 2 2 a a a |
In[18]:= | Kauffman[Knot[10, 153]][a, z] |
Out[18]= | 2 3 2 4 5 z 10 z 3 5 2 7 z 6 + -- + a - a - --- - ---- - 6 a z + 2 a z + 3 a z - 12 z - ---- - 2 3 a 2 a a a 3 3 2 2 4 2 10 z 22 z 3 3 3 5 3 4 > 2 a z + 3 a z + ----- + ----- + 12 a z - 4 a z - 4 a z + 14 z + 3 a a 4 5 5 6 10 z 4 4 6 z 13 z 5 3 5 5 5 6 6 z > ----- - 4 a z - ---- - ----- - 7 a z + a z + a z - 7 z - ---- + 2 3 a 2 a a a 7 7 8 4 6 z 2 z 7 8 z > a z + -- + ---- + a z + z + -- 3 a 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 153]], Vassiliev[3][Knot[10, 153]]} |
Out[19]= | {4, -1} |
In[20]:= | Kh[Knot[10, 153]][q, t] |
Out[20]= | 3 1 1 1 1 1 1 1 t 3 2 - + q + ------ + ----- + ----- + ----- + ----- + ---- + --- + - + q t + q t + q 11 5 7 4 7 3 5 2 3 2 5 q t q q t q t q t q t q t q t 3 2 5 3 5 4 9 5 > q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 153], 2][q] |
Out[21]= | -15 -14 -13 2 2 -9 2 -7 5 3 4 7 4 -6 + q - q - q + --- - --- - q + -- + q - -- + -- + -- - -- + -- + 12 10 8 6 5 4 3 2 q q q q q q q q 4 2 3 4 5 6 7 8 9 10 11 > - + 3 q + 4 q - 5 q + q + 2 q - 2 q + q - q - q + 2 q - q - q 12 13 > q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10153 |
|