© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.151
10151
10.153
10153
    10.152
KnotPlot
This page is passe. Go here instead!

   The Non Alternating Knot 10152   

Visit 10152's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10152's page at Knotilus!

Acknowledgement

10.152
KnotPlot

PD Presentation: X1627 X3849 X5,12,6,13 X18,13,19,14 X16,9,17,10 X10,17,11,18 X20,15,1,16 X14,19,15,20 X7283 X11,4,12,5

Gauss Code: {-1, 9, -2, 10, -3, 1, -9, 2, 5, -6, -10, 3, 4, -8, 7, -5, 6, -4, 8, -7}

DT (Dowker-Thistlethwaite) Code: 6 8 12 2 -16 4 -18 -20 -10 -14

Minimum Braid Representative:


Length is 10, width is 3
Braid index is 3

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 4 4 3 / NotAvailable 1

Alexander Polynomial: t-4 - t-3 - t-2 + 4t-1 - 5 + 4t - t2 - t3 + t4

Conway Polynomial: 1 + 7z2 + 13z4 + 7z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {11, -6}

Jones Polynomial: q-13 - 2q-12 + 2q-11 - 3q-10 + 2q-9 - 2q-8 + q-7 + q-6 + q-4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 2q-40 - q-34 - 3q-32 - 2q-30 - 3q-28 + q-24 + 2q-22 + 3q-20 + 2q-18 + q-16 + q-14

HOMFLY-PT Polynomial: 8a8 + 22a8z2 + 21a8z4 + 8a8z6 + a8z8 - 10a10 - 17a10z2 - 8a10z4 - a10z6 + 3a12 + 2a12z2

Kauffman Polynomial: 8a8 - 22a8z2 + 21a8z4 - 8a8z6 + a8z8 - 10a9z + 17a9z3 - 8a9z5 + a9z7 + 10a10 - 26a10z2 + 25a10z4 - 9a10z6 + a10z8 - 11a11z + 19a11z3 - 8a11z5 + a11z7 + 3a12 - 3a12z2 + 2a12z4 + a13z - 3a13z3 + 2a13z5 - a14z2 - a14z4 + a14z6 + 2a15z - 5a15z3 + 2a15z5 - 2a16z2 + a16z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {7, -15}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 10152. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -7          1
j = -9          1
j = -11        1  
j = -13      2    
j = -15     111   
j = -17    22     
j = -19   111     
j = -21  12       
j = -23 11        
j = -25 1         
j = -271          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-36 - 2q-35 - q-34 + 5q-33 - 3q-32 - 5q-31 + 8q-30 + q-29 - 10q-28 + 8q-27 + 4q-26 - 11q-25 + 6q-24 + 5q-23 - 9q-22 + q-21 + 5q-20 - 4q-19 - 3q-18 + 3q-17 + q-16 - 3q-15 + q-14 + q-13 + q-11 + q-8
3 q-69 - 2q-68 - q-67 + 2q-66 + 4q-65 - 2q-64 - 8q-63 + q-62 + 11q-61 + 5q-60 - 13q-59 - 13q-58 + 11q-57 + 21q-56 - 8q-55 - 26q-54 + q-53 + 33q-52 + q-51 - 33q-50 - 7q-49 + 36q-48 + 7q-47 - 33q-46 - 11q-45 + 33q-44 + 12q-43 - 28q-42 - 14q-41 + 23q-40 + 16q-39 - 15q-38 - 15q-37 + 6q-36 + 16q-35 - 4q-34 - 8q-33 - 6q-32 + 7q-31 + 2q-30 - 4q-28 - 2q-26 + 2q-25 + q-24 + q-23 - 3q-22 + q-20 + q-19 + q-16 + q-12
4 q-112 - 2q-111 - q-110 + 2q-109 + q-108 + 5q-107 - 6q-106 - 6q-105 + 2q-103 + 19q-102 - 2q-101 - 14q-100 - 15q-99 - 13q-98 + 32q-97 + 25q-96 + 5q-95 - 29q-94 - 56q-93 + 12q-92 + 49q-91 + 55q-90 - 11q-89 - 92q-88 - 38q-87 + 43q-86 + 99q-85 + 25q-84 - 103q-83 - 76q-82 + 27q-81 + 117q-80 + 48q-79 - 100q-78 - 93q-77 + 17q-76 + 121q-75 + 57q-74 - 92q-73 - 99q-72 + 9q-71 + 113q-70 + 63q-69 - 71q-68 - 98q-67 - 9q-66 + 89q-65 + 67q-64 - 31q-63 - 81q-62 - 31q-61 + 44q-60 + 59q-59 + 14q-58 - 46q-57 - 36q-56 + 27q-54 + 32q-53 - 7q-52 - 14q-51 - 17q-50 - 6q-49 + 16q-48 + 5q-47 + 8q-46 - 4q-45 - 11q-44 - 2q-43 - 4q-42 + 7q-41 + 5q-40 - 2q-39 - 5q-37 + q-35 - 2q-34 + 2q-33 + q-31 + q-30 - 3q-29 + q-26 + q-25 + q-21 + q-16
5 q-165 - 2q-164 - q-163 + 2q-162 + q-161 + 2q-160 + q-159 - 4q-158 - 8q-157 + 6q-155 + 9q-154 + 9q-153 - q-152 - 18q-151 - 23q-150 - 5q-149 + 14q-148 + 34q-147 + 36q-146 + q-145 - 43q-144 - 66q-143 - 39q-142 + 25q-141 + 93q-140 + 100q-139 + 19q-138 - 99q-137 - 159q-136 - 93q-135 + 66q-134 + 208q-133 + 181q-132 - 10q-131 - 221q-130 - 268q-129 - 68q-128 + 218q-127 + 326q-126 + 145q-125 - 186q-124 - 371q-123 - 211q-122 + 165q-121 + 385q-120 + 252q-119 - 127q-118 - 401q-117 - 282q-116 + 119q-115 + 396q-114 + 294q-113 - 97q-112 - 402q-111 - 306q-110 + 96q-109 + 394q-108 + 308q-107 - 77q-106 - 390q-105 - 316q-104 + 65q-103 + 371q-102 + 318q-101 - 34q-100 - 346q-99 - 320q-98 - q-97 + 302q-96 + 312q-95 + 52q-94 - 244q-93 - 296q-92 - 97q-91 + 169q-90 + 261q-89 + 132q-88 - 81q-87 - 210q-86 - 161q-85 + 17q-84 + 138q-83 + 142q-82 + 55q-81 - 63q-80 - 126q-79 - 69q-78 + 5q-77 + 57q-76 + 81q-75 + 39q-74 - 24q-73 - 45q-72 - 42q-71 - 23q-70 + 20q-69 + 35q-68 + 22q-67 + 13q-66 - 9q-65 - 26q-64 - 12q-63 - 4q-62 + q-61 + 13q-60 + 12q-59 - 3q-58 + 4q-57 - 4q-56 - 8q-55 - 5q-54 + q-53 - 4q-52 + 6q-51 + 5q-50 + q-49 - 2q-48 - 5q-46 - q-45 + q-44 + q-43 - 2q-42 + 2q-41 + q-38 + q-37 - 3q-36 + q-32 + q-31 + q-26 + q-20
6 q-228 - 2q-227 - q-226 + 2q-225 + q-224 + 2q-223 - 2q-222 + 3q-221 - 6q-220 - 8q-219 + 3q-218 + 5q-217 + 10q-216 + 2q-215 + 11q-214 - 12q-213 - 24q-212 - 15q-211 - 4q-210 + 17q-209 + 18q-208 + 56q-207 + 19q-206 - 24q-205 - 55q-204 - 69q-203 - 48q-202 - 20q-201 + 108q-200 + 137q-199 + 108q-198 + 9q-197 - 105q-196 - 214q-195 - 252q-194 - 39q-193 + 168q-192 + 341q-191 + 327q-190 + 156q-189 - 211q-188 - 548q-187 - 486q-186 - 179q-185 + 314q-184 + 663q-183 + 717q-182 + 213q-181 - 516q-180 - 893q-179 - 785q-178 - 127q-177 + 648q-176 + 1172q-175 + 819q-174 - 125q-173 - 956q-172 - 1231q-171 - 659q-170 + 361q-169 + 1306q-168 + 1223q-167 + 275q-166 - 818q-165 - 1385q-164 - 973q-163 + 108q-162 + 1274q-161 + 1371q-160 + 483q-159 - 704q-158 - 1400q-157 - 1082q-156 - 4q-155 + 1233q-154 + 1403q-153 + 557q-152 - 657q-151 - 1390q-150 - 1115q-149 - 51q-148 + 1200q-147 + 1409q-146 + 607q-145 - 608q-144 - 1364q-143 - 1144q-142 - 127q-141 + 1113q-140 + 1392q-139 + 699q-138 - 469q-137 - 1257q-136 - 1175q-135 - 299q-134 + 881q-133 + 1289q-132 + 837q-131 - 170q-130 - 979q-129 - 1135q-128 - 555q-127 + 448q-126 + 1003q-125 + 912q-124 + 232q-123 - 492q-122 - 888q-121 - 722q-120 - 78q-119 + 497q-118 + 744q-117 + 496q-116 + 49q-115 - 404q-114 - 586q-113 - 395q-112 - 35q-111 + 315q-110 + 404q-109 + 318q-108 + 67q-107 - 190q-106 - 307q-105 - 249q-104 - 68q-103 + 76q-102 + 195q-101 + 195q-100 + 101q-99 - 30q-98 - 110q-97 - 116q-96 - 105q-95 - 28q-94 + 51q-93 + 81q-92 + 68q-91 + 39q-90 + 14q-89 - 39q-88 - 56q-87 - 32q-86 - 20q-85 - 2q-84 + 16q-83 + 40q-82 + 22q-81 + 6q-80 + 8q-79 - 13q-78 - 20q-77 - 22q-76 + q-75 - q-74 + q-73 + 16q-72 + 9q-71 + 4q-70 - 6q-69 + 4q-68 - 5q-67 - 8q-66 - 2q-65 - 2q-64 + q-63 - 4q-62 + 6q-61 + 4q-60 + q-59 + q-58 - 2q-57 - 5q-55 - q-54 + q-52 + q-51 - 2q-50 + 2q-49 + q-45 + q-44 - 3q-43 + q-38 + q-37 + q-31 + q-24
7 q-301 - 2q-300 - q-299 + 2q-298 + q-297 + 2q-296 - 2q-295 + q-293 - 6q-292 - 5q-291 + 2q-290 + 5q-289 + 12q-288 + 4q-287 - 3q-286 + 3q-285 - 15q-284 - 20q-283 - 15q-282 - 4q-281 + 28q-280 + 32q-279 + 23q-278 + 32q-277 - 39q-275 - 68q-274 - 93q-273 - 31q-272 + 20q-271 + 67q-270 + 147q-269 + 150q-268 + 93q-267 - 31q-266 - 201q-265 - 272q-264 - 258q-263 - 158q-262 + 114q-261 + 356q-260 + 514q-259 + 479q-258 + 146q-257 - 271q-256 - 679q-255 - 882q-254 - 652q-253 - 99q-252 + 624q-251 + 1243q-250 + 1290q-249 + 767q-248 - 225q-247 - 1326q-246 - 1884q-245 - 1667q-244 - 566q-243 + 1034q-242 + 2262q-241 + 2547q-240 + 1613q-239 - 313q-238 - 2240q-237 - 3262q-236 - 2738q-235 - 666q-234 + 1834q-233 + 3631q-232 + 3710q-231 + 1773q-230 - 1165q-229 - 3685q-228 - 4413q-227 - 2747q-226 + 395q-225 + 3453q-224 + 4833q-223 + 3533q-222 + 317q-221 - 3154q-220 - 5009q-219 - 4023q-218 - 873q-217 + 2803q-216 + 5033q-215 + 4360q-214 + 1252q-213 - 2573q-212 - 5002q-211 - 4484q-210 - 1472q-209 + 2363q-208 + 4946q-207 + 4587q-206 + 1603q-205 - 2289q-204 - 4916q-203 - 4587q-202 - 1659q-201 + 2196q-200 + 4881q-199 + 4635q-198 + 1713q-197 - 2178q-196 - 4872q-195 - 4634q-194 - 1753q-193 + 2101q-192 + 4835q-191 + 4684q-190 + 1839q-189 - 2022q-188 - 4788q-187 - 4706q-186 - 1956q-185 + 1843q-184 + 4671q-183 + 4747q-182 + 2151q-181 - 1586q-180 - 4463q-179 - 4744q-178 - 2399q-177 + 1167q-176 + 4119q-175 + 4700q-174 + 2701q-173 - 631q-172 - 3604q-171 - 4507q-170 - 3005q-169 - 55q-168 + 2893q-167 + 4165q-166 + 3238q-165 + 771q-164 - 2002q-163 - 3597q-162 - 3281q-161 - 1458q-160 + 1004q-159 + 2785q-158 + 3088q-157 + 1987q-156 - 40q-155 - 1840q-154 - 2587q-153 - 2157q-152 - 788q-151 + 789q-150 + 1854q-149 + 2058q-148 + 1281q-147 + 44q-146 - 983q-145 - 1538q-144 - 1391q-143 - 701q-142 + 178q-141 + 938q-140 + 1151q-139 + 877q-138 + 371q-137 - 229q-136 - 678q-135 - 797q-134 - 625q-133 - 189q-132 + 195q-131 + 427q-130 + 536q-129 + 416q-128 + 163q-127 - 103q-126 - 298q-125 - 323q-124 - 273q-123 - 166q-122 + 30q-121 + 169q-120 + 211q-119 + 189q-118 + 110q-117 + 45q-116 - 65q-115 - 144q-114 - 129q-113 - 84q-112 - 46q-111 + 3q-110 + 53q-109 + 99q-108 + 77q-107 + 29q-106 + 15q-105 - 7q-104 - 36q-103 - 59q-102 - 44q-101 - 7q-100 - 2q-99 - q-98 + 22q-97 + 32q-96 + 28q-95 + 6q-94 - 3q-93 + 7q-92 - 10q-91 - 23q-90 - 16q-89 - 9q-88 + 5q-87 - q-86 + 16q-84 + 12q-83 + q-82 + q-81 - 6q-80 + 4q-79 - 5q-78 - 9q-77 - 2q-76 + q-75 - 2q-74 + q-73 - 4q-72 + 6q-71 + 4q-70 + q-68 + q-67 - 2q-66 - 5q-64 - q-63 + q-60 + q-59 - 2q-58 + 2q-57 + q-52 + q-51 - 3q-50 + q-44 + q-43 + q-36 + q-28


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 152]]
Out[2]=   
PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 12, 6, 13], X[18, 13, 19, 14], 
 
>   X[16, 9, 17, 10], X[10, 17, 11, 18], X[20, 15, 1, 16], X[14, 19, 15, 20], 
 
>   X[7, 2, 8, 3], X[11, 4, 12, 5]]
In[3]:=
GaussCode[Knot[10, 152]]
Out[3]=   
GaussCode[-1, 9, -2, 10, -3, 1, -9, 2, 5, -6, -10, 3, 4, -8, 7, -5, 6, -4, 8, 
 
>   -7]
In[4]:=
DTCode[Knot[10, 152]]
Out[4]=   
DTCode[6, 8, 12, 2, -16, 4, -18, -20, -10, -14]
In[5]:=
br = BR[Knot[10, 152]]
Out[5]=   
BR[3, {-1, -1, -1, -2, -2, -1, -1, -2, -2, -2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{3, 10}
In[7]:=
BraidIndex[Knot[10, 152]]
Out[7]=   
3
In[8]:=
Show[DrawMorseLink[Knot[10, 152]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 152]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 4, 4, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 152]][t]
Out[10]=   
      -4    -3    -2   4          2    3    4
-5 + t   - t   - t   + - + 4 t - t  - t  + t
                       t
In[11]:=
Conway[Knot[10, 152]][z]
Out[11]=   
       2       4      6    8
1 + 7 z  + 13 z  + 7 z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 152]}
In[13]:=
{KnotDet[Knot[10, 152]], KnotSignature[Knot[10, 152]]}
Out[13]=   
{11, -6}
In[14]:=
Jones[Knot[10, 152]][q]
Out[14]=   
 -13    2     2     3    2    2     -7    -6    -4
q    - --- + --- - --- + -- - -- + q   + q   + q
        12    11    10    9    8
       q     q     q     q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 152]}
In[16]:=
A2Invariant[Knot[10, 152]][q]
Out[16]=   
 2     -34    3     2     3     -24    2     3     2     -16    -14
--- - q    - --- - --- - --- + q    + --- + --- + --- + q    + q
 40           32    30    28           22    20    18
q            q     q     q            q     q     q
In[17]:=
HOMFLYPT[Knot[10, 152]][a, z]
Out[17]=   
   8       10      12       8  2       10  2      12  2       8  4      10  4
8 a  - 10 a   + 3 a   + 22 a  z  - 17 a   z  + 2 a   z  + 21 a  z  - 8 a   z  + 
 
       8  6    10  6    8  8
>   8 a  z  - a   z  + a  z
In[18]:=
Kauffman[Knot[10, 152]][a, z]
Out[18]=   
   8       10      12       9         11      13        15         8  2
8 a  + 10 a   + 3 a   - 10 a  z - 11 a   z + a   z + 2 a   z - 22 a  z  - 
 
        10  2      12  2    14  2      16  2       9  3       11  3
>   26 a   z  - 3 a   z  - a   z  - 2 a   z  + 17 a  z  + 19 a   z  - 
 
       13  3      15  3       8  4       10  4      12  4    14  4    16  4
>   3 a   z  - 5 a   z  + 21 a  z  + 25 a   z  + 2 a   z  - a   z  + a   z  - 
 
       9  5      11  5      13  5      15  5      8  6      10  6    14  6
>   8 a  z  - 8 a   z  + 2 a   z  + 2 a   z  - 8 a  z  - 9 a   z  + a   z  + 
 
     9  7    11  7    8  8    10  8
>   a  z  + a   z  + a  z  + a   z
In[19]:=
{Vassiliev[2][Knot[10, 152]], Vassiliev[3][Knot[10, 152]]}
Out[19]=   
{7, -15}
In[20]:=
Kh[Knot[10, 152]][q, t]
Out[20]=   
 -9    -7      1        1        1        1        1        2        1
q   + q   + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 
             27  10    25  9    23  9    23  8    21  8    21  7    19  7
            q   t     q   t    q   t    q   t    q   t    q   t    q   t
 
      1        2        1        2        1        1        2        1
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     19  6    17  6    19  5    17  5    15  5    15  4    13  4    15  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1
>   ------
     11  2
    q   t
In[21]:=
ColouredJones[Knot[10, 152], 2][q]
Out[21]=   
 -36    2     -34    5     3     5     8     -29   10     8     4    11
q    - --- - q    + --- - --- - --- + --- + q    - --- + --- + --- - --- + 
        35           33    32    31    30           28    27    26    25
       q            q     q     q     q            q     q     q     q
 
     6     5     9     -21    5     4     3     3     -16    3     -14    -13
>   --- + --- - --- + q    + --- - --- - --- + --- + q    - --- + q    + q    + 
     24    23    22           20    19    18    17           15
    q     q     q            q     q     q     q            q
 
     -11    -8
>   q    + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10152
10.151
10151
10.153
10153