© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10152Visit 10152's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10152's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X3849 X5,12,6,13 X18,13,19,14 X16,9,17,10 X10,17,11,18 X20,15,1,16 X14,19,15,20 X7283 X11,4,12,5 |
Gauss Code: | {-1, 9, -2, 10, -3, 1, -9, 2, 5, -6, -10, 3, 4, -8, 7, -5, 6, -4, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 6 8 12 2 -16 4 -18 -20 -10 -14 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-4 - t-3 - t-2 + 4t-1 - 5 + 4t - t2 - t3 + t4 |
Conway Polynomial: | 1 + 7z2 + 13z4 + 7z6 + z8 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {11, -6} |
Jones Polynomial: | q-13 - 2q-12 + 2q-11 - 3q-10 + 2q-9 - 2q-8 + q-7 + q-6 + q-4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | 2q-40 - q-34 - 3q-32 - 2q-30 - 3q-28 + q-24 + 2q-22 + 3q-20 + 2q-18 + q-16 + q-14 |
HOMFLY-PT Polynomial: | 8a8 + 22a8z2 + 21a8z4 + 8a8z6 + a8z8 - 10a10 - 17a10z2 - 8a10z4 - a10z6 + 3a12 + 2a12z2 |
Kauffman Polynomial: | 8a8 - 22a8z2 + 21a8z4 - 8a8z6 + a8z8 - 10a9z + 17a9z3 - 8a9z5 + a9z7 + 10a10 - 26a10z2 + 25a10z4 - 9a10z6 + a10z8 - 11a11z + 19a11z3 - 8a11z5 + a11z7 + 3a12 - 3a12z2 + 2a12z4 + a13z - 3a13z3 + 2a13z5 - a14z2 - a14z4 + a14z6 + 2a15z - 5a15z3 + 2a15z5 - 2a16z2 + a16z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {7, -15} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 10152. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-36 - 2q-35 - q-34 + 5q-33 - 3q-32 - 5q-31 + 8q-30 + q-29 - 10q-28 + 8q-27 + 4q-26 - 11q-25 + 6q-24 + 5q-23 - 9q-22 + q-21 + 5q-20 - 4q-19 - 3q-18 + 3q-17 + q-16 - 3q-15 + q-14 + q-13 + q-11 + q-8 |
3 | q-69 - 2q-68 - q-67 + 2q-66 + 4q-65 - 2q-64 - 8q-63 + q-62 + 11q-61 + 5q-60 - 13q-59 - 13q-58 + 11q-57 + 21q-56 - 8q-55 - 26q-54 + q-53 + 33q-52 + q-51 - 33q-50 - 7q-49 + 36q-48 + 7q-47 - 33q-46 - 11q-45 + 33q-44 + 12q-43 - 28q-42 - 14q-41 + 23q-40 + 16q-39 - 15q-38 - 15q-37 + 6q-36 + 16q-35 - 4q-34 - 8q-33 - 6q-32 + 7q-31 + 2q-30 - 4q-28 - 2q-26 + 2q-25 + q-24 + q-23 - 3q-22 + q-20 + q-19 + q-16 + q-12 |
4 | q-112 - 2q-111 - q-110 + 2q-109 + q-108 + 5q-107 - 6q-106 - 6q-105 + 2q-103 + 19q-102 - 2q-101 - 14q-100 - 15q-99 - 13q-98 + 32q-97 + 25q-96 + 5q-95 - 29q-94 - 56q-93 + 12q-92 + 49q-91 + 55q-90 - 11q-89 - 92q-88 - 38q-87 + 43q-86 + 99q-85 + 25q-84 - 103q-83 - 76q-82 + 27q-81 + 117q-80 + 48q-79 - 100q-78 - 93q-77 + 17q-76 + 121q-75 + 57q-74 - 92q-73 - 99q-72 + 9q-71 + 113q-70 + 63q-69 - 71q-68 - 98q-67 - 9q-66 + 89q-65 + 67q-64 - 31q-63 - 81q-62 - 31q-61 + 44q-60 + 59q-59 + 14q-58 - 46q-57 - 36q-56 + 27q-54 + 32q-53 - 7q-52 - 14q-51 - 17q-50 - 6q-49 + 16q-48 + 5q-47 + 8q-46 - 4q-45 - 11q-44 - 2q-43 - 4q-42 + 7q-41 + 5q-40 - 2q-39 - 5q-37 + q-35 - 2q-34 + 2q-33 + q-31 + q-30 - 3q-29 + q-26 + q-25 + q-21 + q-16 |
5 | q-165 - 2q-164 - q-163 + 2q-162 + q-161 + 2q-160 + q-159 - 4q-158 - 8q-157 + 6q-155 + 9q-154 + 9q-153 - q-152 - 18q-151 - 23q-150 - 5q-149 + 14q-148 + 34q-147 + 36q-146 + q-145 - 43q-144 - 66q-143 - 39q-142 + 25q-141 + 93q-140 + 100q-139 + 19q-138 - 99q-137 - 159q-136 - 93q-135 + 66q-134 + 208q-133 + 181q-132 - 10q-131 - 221q-130 - 268q-129 - 68q-128 + 218q-127 + 326q-126 + 145q-125 - 186q-124 - 371q-123 - 211q-122 + 165q-121 + 385q-120 + 252q-119 - 127q-118 - 401q-117 - 282q-116 + 119q-115 + 396q-114 + 294q-113 - 97q-112 - 402q-111 - 306q-110 + 96q-109 + 394q-108 + 308q-107 - 77q-106 - 390q-105 - 316q-104 + 65q-103 + 371q-102 + 318q-101 - 34q-100 - 346q-99 - 320q-98 - q-97 + 302q-96 + 312q-95 + 52q-94 - 244q-93 - 296q-92 - 97q-91 + 169q-90 + 261q-89 + 132q-88 - 81q-87 - 210q-86 - 161q-85 + 17q-84 + 138q-83 + 142q-82 + 55q-81 - 63q-80 - 126q-79 - 69q-78 + 5q-77 + 57q-76 + 81q-75 + 39q-74 - 24q-73 - 45q-72 - 42q-71 - 23q-70 + 20q-69 + 35q-68 + 22q-67 + 13q-66 - 9q-65 - 26q-64 - 12q-63 - 4q-62 + q-61 + 13q-60 + 12q-59 - 3q-58 + 4q-57 - 4q-56 - 8q-55 - 5q-54 + q-53 - 4q-52 + 6q-51 + 5q-50 + q-49 - 2q-48 - 5q-46 - q-45 + q-44 + q-43 - 2q-42 + 2q-41 + q-38 + q-37 - 3q-36 + q-32 + q-31 + q-26 + q-20 |
6 | q-228 - 2q-227 - q-226 + 2q-225 + q-224 + 2q-223 - 2q-222 + 3q-221 - 6q-220 - 8q-219 + 3q-218 + 5q-217 + 10q-216 + 2q-215 + 11q-214 - 12q-213 - 24q-212 - 15q-211 - 4q-210 + 17q-209 + 18q-208 + 56q-207 + 19q-206 - 24q-205 - 55q-204 - 69q-203 - 48q-202 - 20q-201 + 108q-200 + 137q-199 + 108q-198 + 9q-197 - 105q-196 - 214q-195 - 252q-194 - 39q-193 + 168q-192 + 341q-191 + 327q-190 + 156q-189 - 211q-188 - 548q-187 - 486q-186 - 179q-185 + 314q-184 + 663q-183 + 717q-182 + 213q-181 - 516q-180 - 893q-179 - 785q-178 - 127q-177 + 648q-176 + 1172q-175 + 819q-174 - 125q-173 - 956q-172 - 1231q-171 - 659q-170 + 361q-169 + 1306q-168 + 1223q-167 + 275q-166 - 818q-165 - 1385q-164 - 973q-163 + 108q-162 + 1274q-161 + 1371q-160 + 483q-159 - 704q-158 - 1400q-157 - 1082q-156 - 4q-155 + 1233q-154 + 1403q-153 + 557q-152 - 657q-151 - 1390q-150 - 1115q-149 - 51q-148 + 1200q-147 + 1409q-146 + 607q-145 - 608q-144 - 1364q-143 - 1144q-142 - 127q-141 + 1113q-140 + 1392q-139 + 699q-138 - 469q-137 - 1257q-136 - 1175q-135 - 299q-134 + 881q-133 + 1289q-132 + 837q-131 - 170q-130 - 979q-129 - 1135q-128 - 555q-127 + 448q-126 + 1003q-125 + 912q-124 + 232q-123 - 492q-122 - 888q-121 - 722q-120 - 78q-119 + 497q-118 + 744q-117 + 496q-116 + 49q-115 - 404q-114 - 586q-113 - 395q-112 - 35q-111 + 315q-110 + 404q-109 + 318q-108 + 67q-107 - 190q-106 - 307q-105 - 249q-104 - 68q-103 + 76q-102 + 195q-101 + 195q-100 + 101q-99 - 30q-98 - 110q-97 - 116q-96 - 105q-95 - 28q-94 + 51q-93 + 81q-92 + 68q-91 + 39q-90 + 14q-89 - 39q-88 - 56q-87 - 32q-86 - 20q-85 - 2q-84 + 16q-83 + 40q-82 + 22q-81 + 6q-80 + 8q-79 - 13q-78 - 20q-77 - 22q-76 + q-75 - q-74 + q-73 + 16q-72 + 9q-71 + 4q-70 - 6q-69 + 4q-68 - 5q-67 - 8q-66 - 2q-65 - 2q-64 + q-63 - 4q-62 + 6q-61 + 4q-60 + q-59 + q-58 - 2q-57 - 5q-55 - q-54 + q-52 + q-51 - 2q-50 + 2q-49 + q-45 + q-44 - 3q-43 + q-38 + q-37 + q-31 + q-24 |
7 | q-301 - 2q-300 - q-299 + 2q-298 + q-297 + 2q-296 - 2q-295 + q-293 - 6q-292 - 5q-291 + 2q-290 + 5q-289 + 12q-288 + 4q-287 - 3q-286 + 3q-285 - 15q-284 - 20q-283 - 15q-282 - 4q-281 + 28q-280 + 32q-279 + 23q-278 + 32q-277 - 39q-275 - 68q-274 - 93q-273 - 31q-272 + 20q-271 + 67q-270 + 147q-269 + 150q-268 + 93q-267 - 31q-266 - 201q-265 - 272q-264 - 258q-263 - 158q-262 + 114q-261 + 356q-260 + 514q-259 + 479q-258 + 146q-257 - 271q-256 - 679q-255 - 882q-254 - 652q-253 - 99q-252 + 624q-251 + 1243q-250 + 1290q-249 + 767q-248 - 225q-247 - 1326q-246 - 1884q-245 - 1667q-244 - 566q-243 + 1034q-242 + 2262q-241 + 2547q-240 + 1613q-239 - 313q-238 - 2240q-237 - 3262q-236 - 2738q-235 - 666q-234 + 1834q-233 + 3631q-232 + 3710q-231 + 1773q-230 - 1165q-229 - 3685q-228 - 4413q-227 - 2747q-226 + 395q-225 + 3453q-224 + 4833q-223 + 3533q-222 + 317q-221 - 3154q-220 - 5009q-219 - 4023q-218 - 873q-217 + 2803q-216 + 5033q-215 + 4360q-214 + 1252q-213 - 2573q-212 - 5002q-211 - 4484q-210 - 1472q-209 + 2363q-208 + 4946q-207 + 4587q-206 + 1603q-205 - 2289q-204 - 4916q-203 - 4587q-202 - 1659q-201 + 2196q-200 + 4881q-199 + 4635q-198 + 1713q-197 - 2178q-196 - 4872q-195 - 4634q-194 - 1753q-193 + 2101q-192 + 4835q-191 + 4684q-190 + 1839q-189 - 2022q-188 - 4788q-187 - 4706q-186 - 1956q-185 + 1843q-184 + 4671q-183 + 4747q-182 + 2151q-181 - 1586q-180 - 4463q-179 - 4744q-178 - 2399q-177 + 1167q-176 + 4119q-175 + 4700q-174 + 2701q-173 - 631q-172 - 3604q-171 - 4507q-170 - 3005q-169 - 55q-168 + 2893q-167 + 4165q-166 + 3238q-165 + 771q-164 - 2002q-163 - 3597q-162 - 3281q-161 - 1458q-160 + 1004q-159 + 2785q-158 + 3088q-157 + 1987q-156 - 40q-155 - 1840q-154 - 2587q-153 - 2157q-152 - 788q-151 + 789q-150 + 1854q-149 + 2058q-148 + 1281q-147 + 44q-146 - 983q-145 - 1538q-144 - 1391q-143 - 701q-142 + 178q-141 + 938q-140 + 1151q-139 + 877q-138 + 371q-137 - 229q-136 - 678q-135 - 797q-134 - 625q-133 - 189q-132 + 195q-131 + 427q-130 + 536q-129 + 416q-128 + 163q-127 - 103q-126 - 298q-125 - 323q-124 - 273q-123 - 166q-122 + 30q-121 + 169q-120 + 211q-119 + 189q-118 + 110q-117 + 45q-116 - 65q-115 - 144q-114 - 129q-113 - 84q-112 - 46q-111 + 3q-110 + 53q-109 + 99q-108 + 77q-107 + 29q-106 + 15q-105 - 7q-104 - 36q-103 - 59q-102 - 44q-101 - 7q-100 - 2q-99 - q-98 + 22q-97 + 32q-96 + 28q-95 + 6q-94 - 3q-93 + 7q-92 - 10q-91 - 23q-90 - 16q-89 - 9q-88 + 5q-87 - q-86 + 16q-84 + 12q-83 + q-82 + q-81 - 6q-80 + 4q-79 - 5q-78 - 9q-77 - 2q-76 + q-75 - 2q-74 + q-73 - 4q-72 + 6q-71 + 4q-70 + q-68 + q-67 - 2q-66 - 5q-64 - q-63 + q-60 + q-59 - 2q-58 + 2q-57 + q-52 + q-51 - 3q-50 + q-44 + q-43 + q-36 + q-28 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 152]] |
Out[2]= | PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 12, 6, 13], X[18, 13, 19, 14], > X[16, 9, 17, 10], X[10, 17, 11, 18], X[20, 15, 1, 16], X[14, 19, 15, 20], > X[7, 2, 8, 3], X[11, 4, 12, 5]] |
In[3]:= | GaussCode[Knot[10, 152]] |
Out[3]= | GaussCode[-1, 9, -2, 10, -3, 1, -9, 2, 5, -6, -10, 3, 4, -8, 7, -5, 6, -4, 8, > -7] |
In[4]:= | DTCode[Knot[10, 152]] |
Out[4]= | DTCode[6, 8, 12, 2, -16, 4, -18, -20, -10, -14] |
In[5]:= | br = BR[Knot[10, 152]] |
Out[5]= | BR[3, {-1, -1, -1, -2, -2, -1, -1, -2, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 152]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 152]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 152]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 4, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 152]][t] |
Out[10]= | -4 -3 -2 4 2 3 4 -5 + t - t - t + - + 4 t - t - t + t t |
In[11]:= | Conway[Knot[10, 152]][z] |
Out[11]= | 2 4 6 8 1 + 7 z + 13 z + 7 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 152]} |
In[13]:= | {KnotDet[Knot[10, 152]], KnotSignature[Knot[10, 152]]} |
Out[13]= | {11, -6} |
In[14]:= | Jones[Knot[10, 152]][q] |
Out[14]= | -13 2 2 3 2 2 -7 -6 -4 q - --- + --- - --- + -- - -- + q + q + q 12 11 10 9 8 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 152]} |
In[16]:= | A2Invariant[Knot[10, 152]][q] |
Out[16]= | 2 -34 3 2 3 -24 2 3 2 -16 -14 --- - q - --- - --- - --- + q + --- + --- + --- + q + q 40 32 30 28 22 20 18 q q q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 152]][a, z] |
Out[17]= | 8 10 12 8 2 10 2 12 2 8 4 10 4 8 a - 10 a + 3 a + 22 a z - 17 a z + 2 a z + 21 a z - 8 a z + 8 6 10 6 8 8 > 8 a z - a z + a z |
In[18]:= | Kauffman[Knot[10, 152]][a, z] |
Out[18]= | 8 10 12 9 11 13 15 8 2 8 a + 10 a + 3 a - 10 a z - 11 a z + a z + 2 a z - 22 a z - 10 2 12 2 14 2 16 2 9 3 11 3 > 26 a z - 3 a z - a z - 2 a z + 17 a z + 19 a z - 13 3 15 3 8 4 10 4 12 4 14 4 16 4 > 3 a z - 5 a z + 21 a z + 25 a z + 2 a z - a z + a z - 9 5 11 5 13 5 15 5 8 6 10 6 14 6 > 8 a z - 8 a z + 2 a z + 2 a z - 8 a z - 9 a z + a z + 9 7 11 7 8 8 10 8 > a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 152]], Vassiliev[3][Knot[10, 152]]} |
Out[19]= | {7, -15} |
In[20]:= | Kh[Knot[10, 152]][q, t] |
Out[20]= | -9 -7 1 1 1 1 1 2 1 q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 27 10 25 9 23 9 23 8 21 8 21 7 19 7 q t q t q t q t q t q t q t 1 2 1 2 1 1 2 1 > ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 19 6 17 6 19 5 17 5 15 5 15 4 13 4 15 3 q t q t q t q t q t q t q t q t 1 > ------ 11 2 q t |
In[21]:= | ColouredJones[Knot[10, 152], 2][q] |
Out[21]= | -36 2 -34 5 3 5 8 -29 10 8 4 11 q - --- - q + --- - --- - --- + --- + q - --- + --- + --- - --- + 35 33 32 31 30 28 27 26 25 q q q q q q q q q 6 5 9 -21 5 4 3 3 -16 3 -14 -13 > --- + --- - --- + q + --- - --- - --- + --- + q - --- + q + q + 24 23 22 20 19 18 17 15 q q q q q q q q -11 -8 > q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10152 |
|