© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10149Visit 10149's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10149's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X7283 |
Gauss Code: | {-1, 10, -2, 1, 3, -9, -10, 2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -12 2 16 -6 18 20 10 14 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 5t-2 - 9t-1 + 11 - 9t + 5t2 - t3 |
Conway Polynomial: | 1 + 2z2 - z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {920, K11n26, ...} |
Determinant and Signature: | {41, -4} |
Jones Polynomial: | q-10 - 3q-9 + 5q-8 - 7q-7 + 7q-6 - 7q-5 + 6q-4 - 3q-3 + 2q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-30 - q-28 + q-26 - 2q-22 - 3q-18 + q-16 + q-12 + 3q-10 + 2q-6 |
HOMFLY-PT Polynomial: | 4a4 + 6a4z2 + 2a4z4 - 4a6 - 6a6z2 - 4a6z4 - a6z6 + a8 + 2a8z2 + a8z4 |
Kauffman Polynomial: | 4a4 - 7a4z2 + 3a4z4 - 3a5z + 2a5z3 - a5z5 + a5z7 + 4a6 - 9a6z2 + 5a6z4 - a6z6 + a6z8 - 3a7z + 5a7z3 - 6a7z5 + 4a7z7 + a8 - 4a8z4 + 3a8z6 + a8z8 + a9z - a9z3 - 2a9z5 + 3a9z7 + a10z2 - 5a10z4 + 4a10z6 + a11z - 4a11z3 + 3a11z5 - a12z2 + a12z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 10149. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-28 - 3q-27 + q-26 + 8q-25 - 14q-24 + 27q-22 - 29q-21 - 10q-20 + 50q-19 - 37q-18 - 22q-17 + 61q-16 - 34q-15 - 29q-14 + 55q-13 - 21q-12 - 28q-11 + 36q-10 - 6q-9 - 18q-8 + 14q-7 + 2q-6 - 6q-5 + 2q-4 + q-3 |
3 | q-54 - 3q-53 + q-52 + 4q-51 + q-50 - 11q-49 - 3q-48 + 24q-47 + 7q-46 - 40q-45 - 22q-44 + 62q-43 + 48q-42 - 84q-41 - 86q-40 + 101q-39 + 127q-38 - 103q-37 - 176q-36 + 105q-35 + 210q-34 - 90q-33 - 241q-32 + 78q-31 + 252q-30 - 55q-29 - 257q-28 + 34q-27 + 248q-26 - 11q-25 - 227q-24 - 16q-23 + 201q-22 + 35q-21 - 159q-20 - 60q-19 + 126q-18 + 58q-17 - 75q-16 - 65q-15 + 46q-14 + 47q-13 - 13q-12 - 36q-11 + 4q-10 + 15q-9 + 7q-8 - 9q-7 - q-6 + 2q-4 |
4 | q-88 - 3q-87 + q-86 + 4q-85 - 3q-84 + 4q-83 - 14q-82 + 5q-81 + 20q-80 - 9q-79 + 7q-78 - 56q-77 + 9q-76 + 79q-75 + 10q-74 + 9q-73 - 182q-72 - 38q-71 + 190q-70 + 140q-69 + 91q-68 - 415q-67 - 251q-66 + 251q-65 + 404q-64 + 370q-63 - 623q-62 - 622q-61 + 123q-60 + 652q-59 + 807q-58 - 658q-57 - 972q-56 - 151q-55 + 743q-54 + 1193q-53 - 538q-52 - 1144q-51 - 416q-50 + 682q-49 + 1396q-48 - 362q-47 - 1135q-46 - 592q-45 + 532q-44 + 1416q-43 - 164q-42 - 987q-41 - 699q-40 + 310q-39 + 1289q-38 + 63q-37 - 718q-36 - 729q-35 + 27q-34 + 1008q-33 + 271q-32 - 354q-31 - 631q-30 - 226q-29 + 604q-28 + 337q-27 - 17q-26 - 385q-25 - 310q-24 + 211q-23 + 222q-22 + 140q-21 - 119q-20 - 206q-19 + q-18 + 59q-17 + 104q-16 + 12q-15 - 63q-14 - 26q-13 - 10q-12 + 26q-11 + 17q-10 - 4q-9 - 4q-8 - 6q-7 + 2q-5 + q-4 |
5 | q-130 - 3q-129 + q-128 + 4q-127 - 3q-126 + q-124 - 6q-123 + q-122 + 15q-121 - 2q-120 - 14q-119 - 10q-118 - 9q-117 + 20q-116 + 50q-115 + 24q-114 - 56q-113 - 107q-112 - 61q-111 + 73q-110 + 217q-109 + 188q-108 - 73q-107 - 394q-106 - 418q-105 - 7q-104 + 572q-103 + 809q-102 + 277q-101 - 736q-100 - 1339q-99 - 764q-98 + 745q-97 + 1938q-96 + 1518q-95 - 525q-94 - 2504q-93 - 2461q-92 + 4q-91 + 2936q-90 + 3485q-89 + 745q-88 - 3094q-87 - 4455q-86 - 1697q-85 + 3034q-84 + 5272q-83 + 2612q-82 - 2713q-81 - 5816q-80 - 3525q-79 + 2307q-78 + 6146q-77 + 4196q-76 - 1810q-75 - 6226q-74 - 4746q-73 + 1348q-72 + 6180q-71 + 5063q-70 - 898q-69 - 5985q-68 - 5288q-67 + 490q-66 + 5713q-65 + 5381q-64 - 65q-63 - 5339q-62 - 5409q-61 - 384q-60 + 4853q-59 + 5365q-58 + 870q-57 - 4234q-56 - 5204q-55 - 1410q-54 + 3466q-53 + 4953q-52 + 1894q-51 - 2586q-50 - 4448q-49 - 2368q-48 + 1611q-47 + 3864q-46 + 2585q-45 - 682q-44 - 2986q-43 - 2650q-42 - 183q-41 + 2157q-40 + 2379q-39 + 743q-38 - 1191q-37 - 1958q-36 - 1084q-35 + 491q-34 + 1353q-33 + 1076q-32 + 93q-31 - 803q-30 - 904q-29 - 313q-28 + 303q-27 + 594q-26 + 409q-25 - 41q-24 - 325q-23 - 277q-22 - 111q-21 + 100q-20 + 196q-19 + 100q-18 - 17q-17 - 57q-16 - 73q-15 - 32q-14 + 25q-13 + 31q-12 + 11q-11 + 9q-10 - 9q-9 - 9q-8 - 3q-7 + 2q-6 + 2q-4 |
6 | q-180 - 3q-179 + q-178 + 4q-177 - 3q-176 - 3q-174 + 9q-173 - 10q-172 - 4q-171 + 22q-170 - 12q-169 - 8q-168 - 15q-167 + 30q-166 - 10q-165 - q-164 + 68q-163 - 35q-162 - 64q-161 - 94q-160 + 59q-159 + 18q-158 + 100q-157 + 276q-156 - 22q-155 - 245q-154 - 481q-153 - 151q-152 - 41q-151 + 454q-150 + 1100q-149 + 553q-148 - 310q-147 - 1474q-146 - 1398q-145 - 1136q-144 + 620q-143 + 2969q-142 + 2980q-141 + 1251q-140 - 2288q-139 - 4210q-138 - 5099q-137 - 1590q-136 + 4589q-135 + 7780q-134 + 6715q-133 - 4q-132 - 6688q-131 - 12184q-130 - 8654q-129 + 2399q-128 + 12298q-127 + 15768q-126 + 7799q-125 - 4878q-124 - 18904q-123 - 19428q-122 - 5598q-121 + 12338q-120 + 24136q-119 + 19069q-118 + 2559q-117 - 20983q-116 - 29031q-115 - 16533q-114 + 7113q-113 + 27725q-112 + 28704q-111 + 12234q-110 - 18087q-109 - 33750q-108 - 25487q-107 - 7q-106 + 26588q-105 + 33650q-104 + 19844q-103 - 13285q-102 - 33983q-101 - 30221q-100 - 5642q-99 + 23419q-98 + 34648q-97 + 24016q-96 - 9069q-95 - 32050q-94 - 31763q-93 - 9201q-92 + 19989q-91 + 33694q-90 + 26000q-89 - 5473q-88 - 29176q-87 - 31830q-86 - 12047q-85 + 15978q-84 + 31596q-83 + 27269q-82 - 1144q-81 - 24815q-80 - 30885q-79 - 15352q-78 + 10132q-77 + 27584q-76 + 27892q-75 + 4709q-74 - 17790q-73 - 27853q-72 - 18630q-71 + 2105q-70 + 20425q-69 + 26268q-68 + 10875q-67 - 8119q-66 - 21236q-65 - 19536q-64 - 6174q-63 + 10341q-62 + 20532q-61 + 14200q-60 + 1632q-59 - 11376q-58 - 15783q-57 - 10932q-56 + 383q-55 + 11251q-54 + 12173q-53 + 7270q-52 - 1777q-51 - 8228q-50 - 9796q-49 - 5114q-48 + 2410q-47 + 6177q-46 + 6832q-45 + 3236q-44 - 1208q-43 - 4841q-42 - 4813q-41 - 1890q-40 + 790q-39 + 3045q-38 + 3033q-37 + 1687q-36 - 686q-35 - 1913q-34 - 1748q-33 - 1065q-32 + 217q-31 + 991q-30 + 1223q-29 + 538q-28 - 78q-27 - 442q-26 - 607q-25 - 367q-24 - 47q-23 + 273q-22 + 246q-21 + 172q-20 + 58q-19 - 75q-18 - 118q-17 - 94q-16 - 9q-15 + 15q-14 + 32q-13 + 32q-12 + 17q-11 - 4q-10 - 12q-9 - 6q-8 - 4q-7 + 2q-4 + q-3 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 149]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 18, 14, 19], > X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], X[19, 14, 20, 15], > X[6, 12, 7, 11], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 149]] |
Out[3]= | GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, > 7] |
In[4]:= | DTCode[Knot[10, 149]] |
Out[4]= | DTCode[4, 8, -12, 2, 16, -6, 18, 20, 10, 14] |
In[5]:= | br = BR[Knot[10, 149]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -2, 1, -2, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 149]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 149]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 149]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 149]][t] |
Out[10]= | -3 5 9 2 3 11 - t + -- - - - 9 t + 5 t - t 2 t t |
In[11]:= | Conway[Knot[10, 149]][z] |
Out[11]= | 2 4 6 1 + 2 z - z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 20], Knot[10, 149], Knot[11, NonAlternating, 26]} |
In[13]:= | {KnotDet[Knot[10, 149]], KnotSignature[Knot[10, 149]]} |
Out[13]= | {41, -4} |
In[14]:= | Jones[Knot[10, 149]][q] |
Out[14]= | -10 3 5 7 7 7 6 3 2 q - -- + -- - -- + -- - -- + -- - -- + -- 9 8 7 6 5 4 3 2 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 149]} |
In[16]:= | A2Invariant[Knot[10, 149]][q] |
Out[16]= | -30 -28 -26 2 3 -16 -12 3 2 q - q + q - --- - --- + q + q + --- + -- 22 18 10 6 q q q q |
In[17]:= | HOMFLYPT[Knot[10, 149]][a, z] |
Out[17]= | 4 6 8 4 2 6 2 8 2 4 4 6 4 8 4 4 a - 4 a + a + 6 a z - 6 a z + 2 a z + 2 a z - 4 a z + a z - 6 6 > a z |
In[18]:= | Kauffman[Knot[10, 149]][a, z] |
Out[18]= | 4 6 8 5 7 9 11 4 2 6 2 4 a + 4 a + a - 3 a z - 3 a z + a z + a z - 7 a z - 9 a z + 10 2 12 2 5 3 7 3 9 3 11 3 4 4 > a z - a z + 2 a z + 5 a z - a z - 4 a z + 3 a z + 6 4 8 4 10 4 12 4 5 5 7 5 9 5 > 5 a z - 4 a z - 5 a z + a z - a z - 6 a z - 2 a z + 11 5 6 6 8 6 10 6 5 7 7 7 9 7 6 8 > 3 a z - a z + 3 a z + 4 a z + a z + 4 a z + 3 a z + a z + 8 8 > a z |
In[19]:= | {Vassiliev[2][Knot[10, 149]], Vassiliev[3][Knot[10, 149]]} |
Out[19]= | {2, -2} |
In[20]:= | Kh[Knot[10, 149]][q, t] |
Out[20]= | -5 2 1 2 1 3 2 4 3 q + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 3 21 8 19 7 17 7 17 6 15 6 15 5 13 5 q q t q t q t q t q t q t q t 3 4 4 3 2 4 1 2 > ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- 13 4 11 4 11 3 9 3 9 2 7 2 7 5 q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 149], 2][q] |
Out[21]= | -28 3 -26 8 14 27 29 10 50 37 22 61 34 q - --- + q + --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - 27 25 24 22 21 20 19 18 17 16 15 q q q q q q q q q q q 29 55 21 28 36 6 18 14 2 6 2 -3 > --- + --- - --- - --- + --- - -- - -- + -- + -- - -- + -- + q 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10149 |
|