© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10148Visit 10148's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10148's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X8493 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X2837 |
Gauss Code: | {1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -12 2 -16 -6 -18 -20 -10 -14 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 3t-2 + 7t-1 - 9 + 7t - 3t2 + t3 |
Conway Polynomial: | 1 + 4z2 + 3z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {31, -2} |
Jones Polynomial: | - q-8 + 2q-7 - 4q-6 + 5q-5 - 5q-4 + 6q-3 - 4q-2 + 3q-1 - 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-24 - 2q-20 - q-18 + q-16 + 3q-12 + q-10 + 2q-8 + q-6 - q-4 + q-2 - 1 |
HOMFLY-PT Polynomial: | - a2 - 2a2z2 - a2z4 + 5a4 + 9a4z2 + 5a4z4 + a4z6 - 3a6 - 3a6z2 - a6z4 |
Kauffman Polynomial: | - az + az3 + a2 - 3a2z2 + 3a2z4 - 3a3z + 6a3z3 - 2a3z5 + a3z7 + 5a4 - 11a4z2 + 10a4z4 - 3a4z6 + a4z8 - 5a5z + 9a5z3 - 7a5z5 + 3a5z7 + 3a6 - 6a6z2 + 2a6z4 - a6z6 + a6z8 - a7z + a7z3 - 4a7z5 + 2a7z7 + 2a8z2 - 5a8z4 + 2a8z6 + 2a9z - 3a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {4, -7} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10148. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 2q-22 + 6q-20 - 7q-19 - 5q-18 + 17q-17 - 9q-16 - 16q-15 + 26q-14 - 5q-13 - 26q-12 + 29q-11 + q-10 - 30q-9 + 26q-8 + 5q-7 - 24q-6 + 15q-5 + 6q-4 - 12q-3 + 4q-2 + 3q-1 - 2 |
3 | - q-45 + 2q-44 - 2q-42 - 3q-41 + 6q-40 + 6q-39 - 8q-38 - 15q-37 + 10q-36 + 25q-35 - 2q-34 - 41q-33 - 6q-32 + 47q-31 + 26q-30 - 53q-29 - 45q-28 + 51q-27 + 64q-26 - 44q-25 - 82q-24 + 36q-23 + 93q-22 - 23q-21 - 107q-20 + 19q-19 + 105q-18 - 4q-17 - 111q-16 + q-15 + 97q-14 + 16q-13 - 90q-12 - 18q-11 + 67q-10 + 28q-9 - 48q-8 - 26q-7 + 25q-6 + 25q-5 - 12q-4 - 14q-3 + 8q-1 + 3 - 3q - q2 - q3 + q4 |
4 | q-74 - 2q-73 + 2q-71 - q-70 + 4q-69 - 8q-68 - 2q-67 + 8q-66 + q-65 + 16q-64 - 24q-63 - 20q-62 + 9q-61 + 12q-60 + 62q-59 - 27q-58 - 57q-57 - 36q-56 - 11q-55 + 141q-54 + 34q-53 - 50q-52 - 113q-51 - 123q-50 + 167q-49 + 134q-48 + 61q-47 - 135q-46 - 285q-45 + 89q-44 + 189q-43 + 224q-42 - 68q-41 - 406q-40 - 43q-39 + 173q-38 + 363q-37 + 31q-36 - 463q-35 - 156q-34 + 130q-33 + 445q-32 + 111q-31 - 473q-30 - 232q-29 + 85q-28 + 476q-27 + 172q-26 - 437q-25 - 277q-24 + 22q-23 + 445q-22 + 227q-21 - 329q-20 - 283q-19 - 67q-18 + 333q-17 + 249q-16 - 161q-15 - 214q-14 - 137q-13 + 159q-12 + 197q-11 - 12q-10 - 92q-9 - 125q-8 + 19q-7 + 90q-6 + 36q-5 - q-4 - 53q-3 - 23q-2 + 14q-1 + 16 + 14q - 6q2 - 9q3 - 2q4 + 3q6 + q7 - q8 |
5 | - q-110 + 2q-109 - 2q-107 + q-106 - 2q-104 + 4q-103 + 3q-102 - 7q-101 - 4q-100 + q-99 + 14q-97 + 15q-96 - 8q-95 - 29q-94 - 26q-93 - 9q-92 + 36q-91 + 70q-90 + 40q-89 - 31q-88 - 103q-87 - 112q-86 - 18q-85 + 124q-84 + 191q-83 + 126q-82 - 73q-81 - 277q-80 - 270q-79 - 42q-78 + 263q-77 + 436q-76 + 266q-75 - 182q-74 - 551q-73 - 509q-72 - 44q-71 + 566q-70 + 784q-69 + 338q-68 - 476q-67 - 979q-66 - 685q-65 + 264q-64 + 1103q-63 + 1031q-62 + q-61 - 1127q-60 - 1325q-59 - 302q-58 + 1081q-57 + 1564q-56 + 586q-55 - 1008q-54 - 1718q-53 - 833q-52 + 899q-51 + 1852q-50 + 1023q-49 - 825q-48 - 1904q-47 - 1179q-46 + 721q-45 + 1982q-44 + 1293q-43 - 673q-42 - 1971q-41 - 1396q-40 + 548q-39 + 2002q-38 + 1485q-37 - 467q-36 - 1915q-35 - 1562q-34 + 267q-33 + 1836q-32 + 1622q-31 - 100q-30 - 1615q-29 - 1622q-28 - 164q-27 + 1363q-26 + 1555q-25 + 373q-24 - 1000q-23 - 1394q-22 - 568q-21 + 637q-20 + 1145q-19 + 645q-18 - 265q-17 - 840q-16 - 649q-15 + 15q-14 + 518q-13 + 526q-12 + 162q-11 - 245q-10 - 381q-9 - 199q-8 + 65q-7 + 205q-6 + 174q-5 + 32q-4 - 84q-3 - 114q-2 - 51q-1 + 20 + 47q + 39q2 + 11q3 - 18q4 - 21q5 - 4q6 + 5q8 + 5q9 - 2q11 |
6 | q-153 - 2q-152 + 2q-150 - q-149 - 2q-147 + 6q-146 - 5q-145 - 4q-144 + 9q-143 - 11q-140 + 10q-139 - 13q-138 - 13q-137 + 25q-136 + 19q-135 + 19q-134 - 23q-133 + 9q-132 - 60q-131 - 70q-130 + 19q-129 + 59q-128 + 113q-127 + 45q-126 + 89q-125 - 113q-124 - 239q-123 - 172q-122 - 59q-121 + 164q-120 + 238q-119 + 479q-118 + 150q-117 - 233q-116 - 503q-115 - 591q-114 - 330q-113 + 32q-112 + 930q-111 + 947q-110 + 596q-109 - 163q-108 - 981q-107 - 1432q-106 - 1286q-105 + 334q-104 + 1371q-103 + 2042q-102 + 1521q-101 + 69q-100 - 1883q-99 - 3153q-98 - 1815q-97 + 60q-96 + 2560q-95 + 3644q-94 + 2775q-93 - 403q-92 - 3881q-91 - 4317q-90 - 2865q-89 + 1092q-88 + 4541q-87 + 5710q-86 + 2560q-85 - 2706q-84 - 5631q-83 - 5888q-82 - 1639q-81 + 3776q-80 + 7506q-79 + 5480q-78 - 520q-77 - 5545q-76 - 7852q-75 - 4206q-74 + 2280q-73 + 8086q-72 + 7406q-71 + 1435q-70 - 4884q-69 - 8752q-68 - 5874q-67 + 1020q-66 + 8112q-65 + 8400q-64 + 2667q-63 - 4331q-62 - 9112q-61 - 6790q-60 + 232q-59 + 8032q-58 + 8936q-57 + 3449q-56 - 3926q-55 - 9266q-54 - 7437q-53 - 457q-52 + 7768q-51 + 9296q-50 + 4294q-49 - 3214q-48 - 9068q-47 - 8066q-46 - 1573q-45 + 6793q-44 + 9250q-43 + 5398q-42 - 1660q-41 - 7915q-40 - 8316q-39 - 3208q-38 + 4586q-37 + 8079q-36 + 6208q-35 + 674q-34 - 5327q-33 - 7328q-32 - 4559q-31 + 1472q-30 + 5367q-29 + 5678q-28 + 2652q-27 - 1916q-26 - 4761q-25 - 4410q-24 - 1060q-23 + 2003q-22 + 3550q-21 + 2936q-20 + 607q-19 - 1725q-18 - 2671q-17 - 1699q-16 - 241q-15 + 1119q-14 + 1681q-13 + 1168q-12 + 87q-11 - 781q-10 - 909q-9 - 660q-8 - 128q-7 + 391q-6 + 563q-5 + 356q-4 + 46q-3 - 148q-2 - 251q-1 - 212 - 54q + 81q2 + 107q3 + 76q4 + 37q5 - 11q6 - 49q7 - 32q8 - 8q9 + 3q10 + 6q11 + 8q12 + 9q13 - 3q14 - 2q15 - q18 - q19 + q20 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 148]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 18, 14, 19], > X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], X[19, 14, 20, 15], > X[11, 6, 12, 7], X[2, 8, 3, 7]] |
In[3]:= | GaussCode[Knot[10, 148]] |
Out[3]= | GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, > 7] |
In[4]:= | DTCode[Knot[10, 148]] |
Out[4]= | DTCode[4, 8, -12, 2, -16, -6, -18, -20, -10, -14] |
In[5]:= | br = BR[Knot[10, 148]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -2, 1, 1, -2, 1, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 148]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 148]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 148]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 148]][t] |
Out[10]= | -3 3 7 2 3 -9 + t - -- + - + 7 t - 3 t + t 2 t t |
In[11]:= | Conway[Knot[10, 148]][z] |
Out[11]= | 2 4 6 1 + 4 z + 3 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 148]} |
In[13]:= | {KnotDet[Knot[10, 148]], KnotSignature[Knot[10, 148]]} |
Out[13]= | {31, -2} |
In[14]:= | Jones[Knot[10, 148]][q] |
Out[14]= | -8 2 4 5 5 6 4 3 -1 - q + -- - -- + -- - -- + -- - -- + - 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 148]} |
In[16]:= | A2Invariant[Knot[10, 148]][q] |
Out[16]= | -24 2 -18 -16 3 -10 2 -6 -4 -2 -1 - q - --- - q + q + --- + q + -- + q - q + q 20 12 8 q q q |
In[17]:= | HOMFLYPT[Knot[10, 148]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 -a + 5 a - 3 a - 2 a z + 9 a z - 3 a z - a z + 5 a z - a z + 4 6 > a z |
In[18]:= | Kauffman[Knot[10, 148]][a, z] |
Out[18]= | 2 4 6 3 5 7 9 2 2 4 2 a + 5 a + 3 a - a z - 3 a z - 5 a z - a z + 2 a z - 3 a z - 11 a z - 6 2 8 2 3 3 3 5 3 7 3 9 3 2 4 > 6 a z + 2 a z + a z + 6 a z + 9 a z + a z - 3 a z + 3 a z + 4 4 6 4 8 4 3 5 5 5 7 5 9 5 > 10 a z + 2 a z - 5 a z - 2 a z - 7 a z - 4 a z + a z - 4 6 6 6 8 6 3 7 5 7 7 7 4 8 6 8 > 3 a z - a z + 2 a z + a z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 148]], Vassiliev[3][Knot[10, 148]]} |
Out[19]= | {4, -7} |
In[20]:= | Kh[Knot[10, 148]][q, t] |
Out[20]= | 2 2 1 1 1 3 1 2 3 3 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 2 3 3 1 3 > ----- + ----- + ----- + ---- + ---- + q t 7 3 7 2 5 2 5 3 q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 148], 2][q] |
Out[21]= | -23 2 6 7 5 17 9 16 26 5 26 29 -2 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- + 22 20 19 18 17 16 15 14 13 12 11 q q q q q q q q q q q -10 30 26 5 24 15 6 12 4 3 > q - -- + -- + -- - -- + -- + -- - -- + -- + - 9 8 7 6 5 4 3 2 q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10148 |
|