© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10147Visit 10147's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10147's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,4,11,3 X5,14,6,15 X15,20,16,1 X12,7,13,8 X8,18,9,17 X19,7,20,6 X16,12,17,11 X18,13,19,14 X2,10,3,9 |
Gauss Code: | {1, -10, 2, -1, -3, 7, 5, -6, 10, -2, 8, -5, 9, 3, -4, -8, 6, -9, -7, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 10 -14 12 2 16 18 -20 8 -6 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-2 + 7t-1 - 9 + 7t - 2t2 |
Conway Polynomial: | 1 - z2 - 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {811, K11n122, ...} |
Determinant and Signature: | {27, 2} |
Jones Polynomial: | q-3 - 2q-2 + 3q-1 - 4 + 5q - 4q2 + 4q3 - 3q4 + q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-10 + q-4 - q-2 + 2q6 + q10 - q12 - q14 + q16 |
HOMFLY-PT Polynomial: | a-4z2 + a-2 - a-2z2 - a-2z4 - 1 - 2z2 - z4 + a2 + a2z2 |
Kauffman Polynomial: | a-6z2 - a-5z + 3a-5z3 + a-4z6 - 3a-3z + 8a-3z3 - 6a-3z5 + 2a-3z7 - a-2 + a-2z2 - 2a-2z4 - a-2z6 + a-2z8 - 4a-1z + 13a-1z3 - 14a-1z5 + 4a-1z7 - 1 + 6z2 - 6z4 - z6 + z8 - 2az + 8az3 - 8az5 + 2az7 - a2 + 4a2z2 - 4a2z4 + a2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 10147. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-10 - 2q-9 - q-8 + 6q-7 - 4q-6 - 6q-5 + 12q-4 - 2q-3 - 13q-2 + 13q-1 + 3 - 17q + 11q2 + 9q3 - 17q4 + 6q5 + 12q6 - 14q7 + q8 + 8q9 - 7q10 + 3q12 - q13 |
3 | q-21 - 2q-20 - q-19 + 2q-18 + 5q-17 - 3q-16 - 9q-15 + q-14 + 14q-13 + 3q-12 - 16q-11 - 11q-10 + 16q-9 + 17q-8 - 10q-7 - 22q-6 + 2q-5 + 23q-4 + 8q-3 - 20q-2 - 17q-1 + 14 + 26q - 9q2 - 30q3 - 2q4 + 40q5 + 6q6 - 41q7 - 16q8 + 48q9 + 19q10 - 44q11 - 28q12 + 42q13 + 29q14 - 33q15 - 30q16 + 22q17 + 27q18 - 12q19 - 18q20 + 2q21 + 13q22 - 6q24 - q25 + q26 + 2q27 - q28 |
4 | q-36 - 2q-35 - q-34 + 2q-33 + q-32 + 6q-31 - 7q-30 - 7q-29 + q-27 + 24q-26 - 5q-25 - 15q-24 - 13q-23 - 15q-22 + 41q-21 + 12q-20 + q-19 - 17q-18 - 52q-17 + 26q-16 + 14q-15 + 35q-14 + 20q-13 - 62q-12 - 10q-11 - 33q-10 + 38q-9 + 79q-8 - 18q-7 - 16q-6 - 99q-5 - 15q-4 + 107q-3 + 52q-2 + 27q-1 - 140 - 94q + 93q2 + 109q3 + 87q4 - 150q5 - 163q6 + 64q7 + 150q8 + 135q9 - 149q10 - 213q11 + 37q12 + 181q13 + 172q14 - 141q15 - 251q16 + 2q17 + 193q18 + 200q19 - 106q20 - 255q21 - 43q22 + 153q23 + 202q24 - 36q25 - 201q26 - 74q27 + 72q28 + 151q29 + 21q30 - 105q31 - 61q32 + 5q33 + 70q34 + 30q35 - 30q36 - 23q37 - 11q38 + 16q39 + 12q40 - 4q41 - 3q42 - 4q43 + 2q44 + 2q45 - q46 |
5 | q-55 - 2q-54 - q-53 + 2q-52 + q-51 + 2q-50 + 2q-49 - 5q-48 - 9q-47 + 5q-45 + 10q-44 + 13q-43 - q-42 - 20q-41 - 23q-40 - 6q-39 + 14q-38 + 33q-37 + 30q-36 - 3q-35 - 36q-34 - 45q-33 - 25q-32 + 15q-31 + 52q-30 + 56q-29 + 22q-28 - 30q-27 - 71q-26 - 66q-25 - 22q-24 + 47q-23 + 101q-22 + 93q-21 + 11q-20 - 92q-19 - 153q-18 - 110q-17 + 35q-16 + 185q-15 + 210q-14 + 68q-13 - 159q-12 - 293q-11 - 200q-10 + 78q-9 + 336q-8 + 337q-7 + 40q-6 - 326q-5 - 448q-4 - 189q-3 + 269q-2 + 536q-1 + 336 - 190q - 574q2 - 470q3 + 79q4 + 603q5 + 583q6 + 12q7 - 596q8 - 671q9 - 114q10 + 599q11 + 751q12 + 175q13 - 589q14 - 808q15 - 249q16 + 598q17 + 874q18 + 290q19 - 597q20 - 920q21 - 357q22 + 594q23 + 972q24 + 407q25 - 553q26 - 995q27 - 490q28 + 488q29 + 992q30 + 552q31 - 377q32 - 927q33 - 609q34 + 238q35 + 819q36 + 620q37 - 99q38 - 655q39 - 574q40 - 27q41 + 464q42 + 492q43 + 102q44 - 295q45 - 359q46 - 130q47 + 144q48 + 240q49 + 119q50 - 58q51 - 133q52 - 81q53 + 10q54 + 60q55 + 47q56 + 7q57 - 27q58 - 20q59 - 2q60 + 5q61 + 7q62 + 3q63 - 3q64 - 2q65 + q66 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 147]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 14, 6, 15], X[15, 20, 16, 1], > X[12, 7, 13, 8], X[8, 18, 9, 17], X[19, 7, 20, 6], X[16, 12, 17, 11], > X[18, 13, 19, 14], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 147]] |
Out[3]= | GaussCode[1, -10, 2, -1, -3, 7, 5, -6, 10, -2, 8, -5, 9, 3, -4, -8, 6, -9, -7, > 4] |
In[4]:= | DTCode[Knot[10, 147]] |
Out[4]= | DTCode[4, 10, -14, 12, 2, 16, 18, -20, 8, -6] |
In[5]:= | br = BR[Knot[10, 147]] |
Out[5]= | BR[4, {1, 1, 1, -2, 1, -2, -3, 2, -1, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 147]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 147]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 147]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 1, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 147]][t] |
Out[10]= | 2 7 2 -9 - -- + - + 7 t - 2 t 2 t t |
In[11]:= | Conway[Knot[10, 147]][z] |
Out[11]= | 2 4 1 - z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 11], Knot[10, 147], Knot[11, NonAlternating, 122]} |
In[13]:= | {KnotDet[Knot[10, 147]], KnotSignature[Knot[10, 147]]} |
Out[13]= | {27, 2} |
In[14]:= | Jones[Knot[10, 147]][q] |
Out[14]= | -3 2 3 2 3 4 5 -4 + q - -- + - + 5 q - 4 q + 4 q - 3 q + q 2 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 147]} |
In[16]:= | A2Invariant[Knot[10, 147]][q] |
Out[16]= | -10 -4 -2 6 10 12 14 16 q + q - q + 2 q + q - q - q + q |
In[17]:= | HOMFLYPT[Knot[10, 147]][a, z] |
Out[17]= | 2 2 4 -2 2 2 z z 2 2 4 z -1 + a + a - 2 z + -- - -- + a z - z - -- 4 2 2 a a a |
In[18]:= | Kauffman[Knot[10, 147]][a, z] |
Out[18]= | 2 2 3 -2 2 z 3 z 4 z 2 z z 2 2 3 z -1 - a - a - -- - --- - --- - 2 a z + 6 z + -- + -- + 4 a z + ---- + 5 3 a 6 2 5 a a a a a 3 3 4 5 5 8 z 13 z 3 4 2 z 2 4 6 z 14 z 5 > ---- + ----- + 8 a z - 6 z - ---- - 4 a z - ---- - ----- - 8 a z - 3 a 2 3 a a a a 6 6 7 7 8 6 z z 2 6 2 z 4 z 7 8 z > z + -- - -- + a z + ---- + ---- + 2 a z + z + -- 4 2 3 a 2 a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 147]], Vassiliev[3][Knot[10, 147]]} |
Out[19]= | {-1, 0} |
In[20]:= | Kh[Knot[10, 147]][q, t] |
Out[20]= | 3 1 1 1 2 1 2 2 q 3 3 q + 3 q + ----- + ----- + ----- + ----- + ---- + --- + --- + 2 q t + 7 4 5 3 3 3 3 2 2 q t t q t q t q t q t q t 5 5 2 7 2 7 3 9 3 11 4 > 2 q t + 2 q t + 2 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 147], 2][q] |
Out[21]= | -10 2 -8 6 4 6 12 2 13 13 2 3 3 + q - -- - q + -- - -- - -- + -- - -- - -- + -- - 17 q + 11 q + 9 q - 9 7 6 5 4 3 2 q q q q q q q q 4 5 6 7 8 9 10 12 13 > 17 q + 6 q + 12 q - 14 q + q + 8 q - 7 q + 3 q - q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10147 |
|