© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10146Visit 10146's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10146's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X5,18,6,19 X8394 X2,9,3,10 X11,17,12,16 X7,12,8,13 X15,6,16,7 X17,11,18,10 X13,1,14,20 X19,15,20,14 |
Gauss Code: | {1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8, 2, -10, 9} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -18 -12 2 -16 -20 -6 -10 -14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-2 - 8t-1 + 13 - 8t + 2t2 |
Conway Polynomial: | 1 + 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11n18, K11n62, ...} |
Determinant and Signature: | {33, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 4q-3 + 5q-2 - 6q-1 + 6 - 4q + 3q2 - q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 + q-14 + q-12 - q-10 + q-8 - q-6 + q-2 + 2q2 - q4 + q6 + q8 - q10 |
HOMFLY-PT Polynomial: | - a-2z2 + 1 + z2 + z4 + a2z2 + a2z4 - a4z2 |
Kauffman Polynomial: | - a-3z + a-3z3 - 3a-2z2 + 3a-2z4 - 3a-1z + 6a-1z3 - 2a-1z5 + a-1z7 + 1 - 3z2 + 5z4 - 2z6 + z8 - 3az + 12az3 - 11az5 + 4az7 + 3a2z2 - 6a2z4 + a2z6 + a2z8 - a3z + 5a3z3 - 8a3z5 + 3a3z7 + 3a4z2 - 8a4z4 + 3a4z6 - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + 9q-12 - 9q-11 - 7q-10 + 20q-9 - 9q-8 - 19q-7 + 28q-6 - 2q-5 - 29q-4 + 30q-3 + 4q-2 - 33q-1 + 24 + 8q - 25q2 + 12q3 + 8q4 - 11q5 + 3q6 + 3q7 - 2q8 |
3 | - q-30 + 3q-29 - 5q-27 - 4q-26 + 9q-25 + 13q-24 - 13q-23 - 22q-22 + 8q-21 + 35q-20 + 2q-19 - 45q-18 - 20q-17 + 50q-16 + 40q-15 - 44q-14 - 64q-13 + 36q-12 + 83q-11 - 22q-10 - 99q-9 + 7q-8 + 110q-7 + 7q-6 - 117q-5 - 19q-4 + 118q-3 + 33q-2 - 116q-1 - 39 + 99q + 53q2 - 86q3 - 52q4 + 59q5 + 53q6 - 38q7 - 42q8 + 15q9 + 33q10 - 5q11 - 17q12 - 3q13 + 8q14 + 4q15 - 3q16 - q17 - q18 + q19 |
4 | q-50 - 3q-49 + 5q-47 + 4q-45 - 16q-44 - 6q-43 + 14q-42 + 8q-41 + 31q-40 - 36q-39 - 36q-38 + q-37 + 8q-36 + 95q-35 - 15q-34 - 55q-33 - 58q-32 - 63q-31 + 149q-30 + 73q-29 + 12q-28 - 101q-27 - 217q-26 + 96q-25 + 149q-24 + 183q-23 - 41q-22 - 371q-21 - 64q-20 + 135q-19 + 367q-18 + 109q-17 - 444q-16 - 242q-15 + 47q-14 + 489q-13 + 267q-12 - 448q-11 - 372q-10 - 49q-9 + 544q-8 + 381q-7 - 415q-6 - 450q-5 - 126q-4 + 543q-3 + 450q-2 - 335q-1 - 472 - 204q + 459q2 + 475q3 - 187q4 - 413q5 - 271q6 + 286q7 + 415q8 - 20q9 - 257q10 - 265q11 + 85q12 + 262q13 + 76q14 - 81q15 - 169q16 - 30q17 + 99q18 + 64q19 + 11q20 - 57q21 - 36q22 + 13q23 + 18q24 + 16q25 - 5q26 - 10q27 - 2q28 + 3q30 + q31 - q32 |
5 | - q-75 + 3q-74 - 5q-72 + 3q-69 + 9q-68 + 6q-67 - 14q-66 - 18q-65 - 8q-64 + 6q-63 + 29q-62 + 36q-61 + 9q-60 - 47q-59 - 60q-58 - 35q-57 + 18q-56 + 89q-55 + 101q-54 + 25q-53 - 88q-52 - 150q-51 - 125q-50 + 11q-49 + 190q-48 + 255q-47 + 125q-46 - 142q-45 - 360q-44 - 349q-43 - 20q-42 + 418q-41 + 586q-40 + 298q-39 - 339q-38 - 816q-37 - 658q-36 + 127q-35 + 946q-34 + 1063q-33 + 215q-32 - 974q-31 - 1428q-30 - 633q-29 + 859q-28 + 1737q-27 + 1081q-26 - 663q-25 - 1946q-24 - 1501q-23 + 410q-22 + 2067q-21 + 1864q-20 - 146q-19 - 2122q-18 - 2159q-17 - 92q-16 + 2138q-15 + 2370q-14 + 303q-13 - 2118q-12 - 2542q-11 - 474q-10 + 2093q-9 + 2647q-8 + 627q-7 - 2016q-6 - 2730q-5 - 798q-4 + 1932q-3 + 2762q-2 + 942q-1 - 1730 - 2744q - 1150q2 + 1503q3 + 2649q4 + 1296q5 - 1150q6 - 2435q7 - 1458q8 + 774q9 + 2121q10 + 1497q11 - 348q12 - 1706q13 - 1457q14 - 9q15 + 1238q16 + 1271q17 + 299q18 - 774q19 - 1034q20 - 417q21 + 383q22 + 713q23 + 444q24 - 104q25 - 443q26 - 358q27 - 37q28 + 211q29 + 239q30 + 90q31 - 71q32 - 134q33 - 76q34 + 12q35 + 49q36 + 45q37 + 15q38 - 17q39 - 22q40 - 5q41 + 5q43 + 5q44 - 2q46 |
6 | q-105 - 3q-104 + 5q-102 - 7q-99 + 4q-98 - 9q-97 - 6q-96 + 23q-95 + 9q-94 + 9q-93 - 20q-92 + q-91 - 40q-90 - 36q-89 + 38q-88 + 39q-87 + 63q-86 - 2q-85 + 45q-84 - 96q-83 - 141q-82 - 38q-81 - q-80 + 123q-79 + 88q-78 + 262q-77 + 16q-76 - 181q-75 - 232q-74 - 285q-73 - 124q-72 - 28q-71 + 567q-70 + 497q-69 + 313q-68 - 48q-67 - 547q-66 - 843q-65 - 955q-64 + 165q-63 + 814q-62 + 1377q-61 + 1223q-60 + 302q-59 - 1152q-58 - 2487q-57 - 1682q-56 - 378q-55 + 1745q-54 + 3087q-53 + 2891q-52 + 447q-51 - 3012q-50 - 4123q-49 - 3501q-48 - 115q-47 + 3720q-46 + 6014q-45 + 4071q-44 - 1130q-43 - 5221q-42 - 7074q-41 - 3984q-40 + 1982q-39 + 7763q-38 + 8045q-37 + 2602q-36 - 4130q-35 - 9319q-34 - 8082q-33 - 1310q-32 + 7563q-31 + 10771q-30 + 6409q-29 - 1796q-28 - 9870q-27 - 11000q-26 - 4511q-25 + 6335q-24 + 12003q-23 + 9107q-22 + 396q-21 - 9519q-20 - 12568q-19 - 6725q-18 + 5123q-17 + 12370q-16 + 10654q-15 + 1882q-14 - 8999q-13 - 13313q-12 - 8078q-11 + 4174q-10 + 12374q-9 + 11590q-8 + 2987q-7 - 8352q-6 - 13633q-5 - 9143q-4 + 3013q-3 + 11916q-2 + 12253q-1 + 4337 - 7014q - 13327q2 - 10185q3 + 1019q4 + 10342q5 + 12288q6 + 6077q7 - 4382q8 - 11619q9 - 10661q10 - 1757q11 + 7097q12 + 10770q13 + 7388q14 - 769q15 - 8029q16 - 9482q17 - 4116q18 + 2819q19 + 7300q20 + 6962q21 + 2249q22 - 3522q23 - 6351q24 - 4539q25 - 593q26 + 3112q27 + 4578q28 + 3089q29 - 157q30 - 2693q31 - 2968q32 - 1692q33 + 248q34 + 1786q35 + 1991q36 + 915q37 - 388q38 - 1041q39 - 1049q40 - 547q41 + 206q42 + 645q43 + 546q44 + 205q45 - 84q46 - 262q47 - 288q48 - 114q49 + 60q50 + 114q51 + 90q52 + 52q53 + 2q54 - 51q55 - 36q56 - 11q57 + 2q58 + 5q59 + 8q60 + 10q61 - 3q62 - 2q63 - q66 - q67 + q68 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 146]] |
Out[2]= | PD[X[4, 2, 5, 1], X[5, 18, 6, 19], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[11, 17, 12, 16], X[7, 12, 8, 13], X[15, 6, 16, 7], X[17, 11, 18, 10], > X[13, 1, 14, 20], X[19, 15, 20, 14]] |
In[3]:= | GaussCode[Knot[10, 146]] |
Out[3]= | GaussCode[1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8, 2, -10, > 9] |
In[4]:= | DTCode[Knot[10, 146]] |
Out[4]= | DTCode[4, 8, -18, -12, 2, -16, -20, -6, -10, -14] |
In[5]:= | br = BR[Knot[10, 146]] |
Out[5]= | BR[4, {-1, -1, 2, -1, 2, 1, -3, 2, -1, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 146]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 146]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 146]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 146]][t] |
Out[10]= | 2 8 2 13 + -- - - - 8 t + 2 t 2 t t |
In[11]:= | Conway[Knot[10, 146]][z] |
Out[11]= | 4 1 + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 146], Knot[11, NonAlternating, 18], Knot[11, NonAlternating, 62]} |
In[13]:= | {KnotDet[Knot[10, 146]], KnotSignature[Knot[10, 146]]} |
Out[13]= | {33, 0} |
In[14]:= | Jones[Knot[10, 146]][q] |
Out[14]= | -5 3 4 5 6 2 3 6 - q + -- - -- + -- - - - 4 q + 3 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 146]} |
In[16]:= | A2Invariant[Knot[10, 146]][q] |
Out[16]= | -16 -14 -12 -10 -8 -6 -2 2 4 6 8 10 -q + q + q - q + q - q + q + 2 q - q + q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 146]][a, z] |
Out[17]= | 2 2 z 2 2 4 2 4 2 4 1 + z - -- + a z - a z + z + a z 2 a |
In[18]:= | Kauffman[Knot[10, 146]][a, z] |
Out[18]= | 2 3 3 z 3 z 3 2 3 z 2 2 4 2 z 6 z 1 - -- - --- - 3 a z - a z - 3 z - ---- + 3 a z + 3 a z + -- + ---- + 3 a 2 3 a a a a 4 5 3 3 3 5 3 4 3 z 2 4 4 4 2 z > 12 a z + 5 a z - 2 a z + 5 z + ---- - 6 a z - 8 a z - ---- - 2 a a 7 5 3 5 5 5 6 2 6 4 6 z 7 > 11 a z - 8 a z + a z - 2 z + a z + 3 a z + -- + 4 a z + a 3 7 8 2 8 > 3 a z + z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 146]], Vassiliev[3][Knot[10, 146]]} |
Out[19]= | {0, 0} |
In[20]:= | Kh[Knot[10, 146]][q, t] |
Out[20]= | 3 1 2 1 2 2 3 2 3 3 - + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 7 3 > 2 q t + 2 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 146], 2][q] |
Out[21]= | -15 3 9 9 7 20 9 19 28 2 29 30 4 24 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- + -- - 14 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 33 2 3 4 5 6 7 8 > -- + 8 q - 25 q + 12 q + 8 q - 11 q + 3 q + 3 q - 2 q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10146 |
|