© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10145Visit 10145's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10145's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X5,12,6,13 X8394 X2,9,3,10 X11,16,12,17 X17,10,18,11 X7,18,8,19 X13,20,14,1 X19,14,20,15 X15,6,16,7 |
Gauss Code: | {1, -4, 3, -1, -2, 10, -7, -3, 4, 6, -5, 2, -8, 9, -10, 5, -6, 7, -9, 8} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -12 -18 2 -16 -20 -6 -10 -14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-2 + t-1 - 3 + t + t2 |
Conway Polynomial: | 1 + 5z2 + z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {3, -2} |
Jones Polynomial: | - q-10 + q-9 - q-8 + q-7 + q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-32 - q-30 + q-24 + q-14 + q-10 + q-8 + q-6 |
HOMFLY-PT Polynomial: | 2a4 + 4a4z2 + a4z4 - a6 + a8 + a8z2 - a10 |
Kauffman Polynomial: | 2a4 - 4a4z2 + a4z4 - a5z + a6 - 2a6z2 - 2a7z + 8a7z3 - 6a7z5 + a7z7 + a8 - 4a8z2 + 9a8z4 - 6a8z6 + a8z8 - 6a9z + 18a9z3 - 12a9z5 + 2a9z7 + a10 - 6a10z2 + 10a10z4 - 6a10z6 + a10z8 - 5a11z + 10a11z3 - 6a11z5 + a11z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {5, -12} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10145. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-29 - q-28 - q-27 + 2q-26 - q-25 - q-24 + 2q-23 - 2q-22 + q-21 + 2q-20 - 4q-19 + 2q-18 + 2q-17 - 5q-16 + 2q-15 + 2q-14 - 5q-13 + 4q-12 + 2q-11 - 4q-10 + 2q-9 + q-8 - q-7 + q-4 |
3 | - q-57 + q-56 + q-55 - 2q-53 + 2q-51 - 2q-49 + 3q-47 - 2q-46 - 3q-45 + 2q-44 + 5q-43 - 2q-42 - 6q-41 + 2q-40 + 6q-39 - q-38 - 5q-37 + 4q-35 - 3q-33 + q-31 + q-30 - q-29 - q-28 + q-26 + q-25 - 2q-24 - q-23 + q-22 + 2q-21 - 2q-20 - 2q-19 + q-18 + 3q-17 - 2q-15 - q-14 + 2q-13 + q-12 - q-10 + q-6 |
4 | q-94 - q-93 - q-92 + 3q-89 - q-88 - q-87 - q-86 - q-85 + 4q-84 - q-83 - q-82 - 2q-81 + q-80 + 5q-79 - 2q-78 - 3q-77 - 5q-76 + 3q-75 + 7q-74 + q-73 - 3q-72 - 8q-71 + 2q-70 + 6q-69 + q-68 - 2q-67 - 4q-66 + 3q-65 + 4q-64 - 3q-63 - 5q-62 - q-61 + 6q-60 + 8q-59 - 6q-58 - 10q-57 - q-56 + 7q-55 + 13q-54 - 6q-53 - 12q-52 - 3q-51 + 5q-50 + 18q-49 - 5q-48 - 14q-47 - 5q-46 + 4q-45 + 21q-44 - 5q-43 - 16q-42 - 4q-41 + 3q-40 + 21q-39 - 6q-38 - 16q-37 - 2q-36 + 3q-35 + 20q-34 - 5q-33 - 14q-32 - 4q-31 + 2q-30 + 17q-29 - 2q-28 - 8q-27 - 4q-26 - 3q-25 + 9q-24 + q-22 - q-21 - 4q-20 + 2q-19 - q-18 + 2q-17 + q-16 - q-13 + q-8 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 145]] |
Out[2]= | PD[X[4, 2, 5, 1], X[5, 12, 6, 13], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[11, 16, 12, 17], X[17, 10, 18, 11], X[7, 18, 8, 19], X[13, 20, 14, 1], > X[19, 14, 20, 15], X[15, 6, 16, 7]] |
In[3]:= | GaussCode[Knot[10, 145]] |
Out[3]= | GaussCode[1, -4, 3, -1, -2, 10, -7, -3, 4, 6, -5, 2, -8, 9, -10, 5, -6, 7, -9, > 8] |
In[4]:= | DTCode[Knot[10, 145]] |
Out[4]= | DTCode[4, 8, -12, -18, 2, -16, -20, -6, -10, -14] |
In[5]:= | br = BR[Knot[10, 145]] |
Out[5]= | BR[4, {-1, -1, -2, 1, -2, -1, -3, -2, 1, -2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 145]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 145]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 145]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 145]][t] |
Out[10]= | -2 1 2 -3 + t + - + t + t t |
In[11]:= | Conway[Knot[10, 145]][z] |
Out[11]= | 2 4 1 + 5 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 145]} |
In[13]:= | {KnotDet[Knot[10, 145]], KnotSignature[Knot[10, 145]]} |
Out[13]= | {3, -2} |
In[14]:= | Jones[Knot[10, 145]][q] |
Out[14]= | -10 -9 -8 -7 -2 -q + q - q + q + q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 145]} |
In[16]:= | A2Invariant[Knot[10, 145]][q] |
Out[16]= | -32 -30 -24 -14 -10 -8 -6 -q - q + q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[10, 145]][a, z] |
Out[17]= | 4 6 8 10 4 2 8 2 4 4 2 a - a + a - a + 4 a z + a z + a z |
In[18]:= | Kauffman[Knot[10, 145]][a, z] |
Out[18]= | 4 6 8 10 5 7 9 11 4 2 6 2 2 a + a + a + a - a z - 2 a z - 6 a z - 5 a z - 4 a z - 2 a z - 8 2 10 2 7 3 9 3 11 3 4 4 8 4 > 4 a z - 6 a z + 8 a z + 18 a z + 10 a z + a z + 9 a z + 10 4 7 5 9 5 11 5 8 6 10 6 7 7 > 10 a z - 6 a z - 12 a z - 6 a z - 6 a z - 6 a z + a z + 9 7 11 7 8 8 10 8 > 2 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 145]], Vassiliev[3][Knot[10, 145]]} |
Out[19]= | {5, -12} |
In[20]:= | Kh[Knot[10, 145]][q, t] |
Out[20]= | -5 -3 1 1 1 1 1 1 1 q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 21 9 17 8 17 7 15 6 13 6 15 5 11 5 q t q t q t q t q t q t q t 2 1 1 1 > ------ + ------ + ----- + ----- 11 4 11 3 7 3 7 2 q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 145], 2][q] |
Out[21]= | -29 -28 -27 2 -25 -24 2 2 -21 2 4 2 q - q - q + --- - q - q + --- - --- + q + --- - --- + --- + 26 23 22 20 19 18 q q q q q q 2 5 2 2 5 4 2 4 2 -8 -7 -4 > --- - --- + --- + --- - --- + --- + --- - --- + -- + q - q + q 17 16 15 14 13 12 11 10 9 q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10145 |
|