© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10144Visit 10144's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10144's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X18,11,19,12 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X20,13,1,14 X12,19,13,20 X9,2,10,3 |
Gauss Code: | {-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, -8} |
DT (Dowker-Thistlethwaite) Code: | 4 10 14 16 2 -18 -20 8 6 -12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 3t-2 + 10t-1 - 13 + 10t - 3t2 |
Conway Polynomial: | 1 - 2z2 - 3z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11n99, ...} |
Determinant and Signature: | {39, -2} |
Jones Polynomial: | q-7 - 3q-6 + 5q-5 - 6q-4 + 7q-3 - 7q-2 + 5q-1 - 3 + 2q |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 - q-20 - q-18 + 2q-16 + 2q-12 - 2q-8 - q-6 - 3q-4 + 2q-2 + 1 + q2 + 2q4 |
HOMFLY-PT Polynomial: | 3 + 2z2 - 4a2 - 5a2z2 - 2a2z4 + 2a4 - a4z4 + a6z2 |
Kauffman Polynomial: | 3 - 7z2 + 3z4 - az5 + az7 + 4a2 - 12a2z2 + 8a2z4 - 2a2z6 + a2z8 - 2a3z + 8a3z3 - 8a3z5 + 4a3z7 + 2a4 - 2a4z2 - 2a4z4 + 2a4z6 + a4z8 - 2a5z + 4a5z3 - 4a5z5 + 3a5z7 + 2a6z2 - 6a6z4 + 4a6z6 - 4a7z3 + 3a7z5 - a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, 2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10144. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 3q-19 + q-18 + 8q-17 - 13q-16 - q-15 + 25q-14 - 25q-13 - 10q-12 + 44q-11 - 32q-10 - 21q-9 + 54q-8 - 29q-7 - 26q-6 + 49q-5 - 17q-4 - 24q-3 + 31q-2 - 5q-1 - 16 + 12q + q2 - 6q3 + 2q4 + q5 |
3 | q-39 - 3q-38 + q-37 + 4q-36 + q-35 - 10q-34 - 4q-33 + 21q-32 + 9q-31 - 33q-30 - 23q-29 + 47q-28 + 46q-27 - 62q-26 - 75q-25 + 71q-24 + 111q-23 - 75q-22 - 144q-21 + 69q-20 + 176q-19 - 62q-18 - 196q-17 + 48q-16 + 208q-15 - 33q-14 - 208q-13 + 16q-12 + 198q-11 + 5q-10 - 184q-9 - 20q-8 + 156q-7 + 37q-6 - 126q-5 - 50q-4 + 96q-3 + 51q-2 - 59q-1 - 52 + 37q + 38q2 - 11q3 - 30q4 + 4q5 + 13q6 + 5q7 - 9q8 - q9 + 2q11 |
4 | q-64 - 3q-63 + q-62 + 4q-61 - 3q-60 + 4q-59 - 13q-58 + 4q-57 + 17q-56 - 8q-55 + 12q-54 - 49q-53 + q-52 + 59q-51 + 9q-50 + 32q-49 - 141q-48 - 46q-47 + 120q-46 + 95q-45 + 123q-44 - 289q-43 - 205q-42 + 134q-41 + 262q-40 + 345q-39 - 412q-38 - 462q-37 + 22q-36 + 415q-35 + 664q-34 - 419q-33 - 700q-32 - 183q-31 + 463q-30 + 943q-29 - 326q-28 - 814q-27 - 375q-26 + 409q-25 + 1085q-24 - 201q-23 - 796q-22 - 493q-21 + 294q-20 + 1081q-19 - 61q-18 - 676q-17 - 552q-16 + 137q-15 + 962q-14 + 91q-13 - 475q-12 - 547q-11 - 47q-10 + 732q-9 + 217q-8 - 218q-7 - 454q-6 - 202q-5 + 432q-4 + 245q-3 + 8q-2 - 273q-1 - 241 + 156q + 158q2 + 108q3 - 86q4 - 159q5 + 6q6 + 44q7 + 81q8 + 9q9 - 54q10 - 19q11 - 7q12 + 23q13 + 14q14 - 5q15 - 4q16 - 6q17 + 2q19 + q20 |
5 | q-95 - 3q-94 + q-93 + 4q-92 - 3q-91 + q-89 - 5q-88 + 12q-86 - q-85 - 10q-84 - 5q-83 - 9q-82 + 8q-81 + 33q-80 + 26q-79 - 25q-78 - 67q-77 - 56q-76 + 15q-75 + 123q-74 + 148q-73 + 15q-72 - 206q-71 - 294q-70 - 101q-69 + 267q-68 + 518q-67 + 312q-66 - 302q-65 - 815q-64 - 643q-63 + 239q-62 + 1127q-61 + 1122q-60 - 19q-59 - 1424q-58 - 1709q-57 - 347q-56 + 1611q-55 + 2328q-54 + 883q-53 - 1665q-52 - 2927q-51 - 1481q-50 + 1554q-49 + 3403q-48 + 2119q-47 - 1333q-46 - 3740q-45 - 2672q-44 + 1020q-43 + 3912q-42 + 3138q-41 - 695q-40 - 3956q-39 - 3451q-38 + 370q-37 + 3881q-36 + 3667q-35 - 86q-34 - 3736q-33 - 3767q-32 - 176q-31 + 3520q-30 + 3785q-29 + 447q-28 - 3248q-27 - 3764q-26 - 692q-25 + 2904q-24 + 3649q-23 + 984q-22 - 2471q-21 - 3508q-20 - 1255q-19 + 1980q-18 + 3237q-17 + 1520q-16 - 1407q-15 - 2882q-14 - 1731q-13 + 817q-12 + 2432q-11 + 1810q-10 - 246q-9 - 1865q-8 - 1784q-7 - 248q-6 + 1311q-5 + 1576q-4 + 571q-3 - 712q-2 - 1283q-1 - 753 + 279q + 885q2 + 733q3 + 88q4 - 537q5 - 615q6 - 221q7 + 208q8 + 410q9 + 293q10 - 37q11 - 236q12 - 200q13 - 77q14 + 79q15 + 152q16 + 73q17 - 19q18 - 48q19 - 58q20 - 24q21 + 24q22 + 27q23 + 9q24 + 7q25 - 9q26 - 9q27 - 3q28 + 2q29 + 2q31 |
6 | q-132 - 3q-131 + q-130 + 4q-129 - 3q-128 - 3q-126 + 9q-125 - 9q-124 - 5q-123 + 19q-122 - 11q-121 - 4q-120 - 11q-119 + 28q-118 - 14q-117 - 10q-116 + 55q-115 - 23q-114 - 32q-113 - 64q-112 + 51q-111 - 26q-110 + 23q-109 + 199q-108 + 20q-107 - 84q-106 - 272q-105 - 71q-104 - 167q-103 + 96q-102 + 636q-101 + 423q-100 + 65q-99 - 656q-98 - 659q-97 - 960q-96 - 154q-95 + 1396q-94 + 1722q-93 + 1204q-92 - 658q-91 - 1764q-90 - 3172q-89 - 1827q-88 + 1671q-87 + 3957q-86 + 4300q-85 + 1156q-84 - 2329q-83 - 6725q-82 - 5970q-81 - 251q-80 + 5731q-79 + 9032q-78 + 5819q-77 - 486q-76 - 9841q-75 - 11867q-74 - 5202q-73 + 5031q-72 + 13224q-71 + 12175q-70 + 4288q-69 - 10422q-68 - 16994q-67 - 11590q-66 + 1572q-65 + 14793q-64 + 17516q-63 + 10120q-62 - 8355q-61 - 19384q-60 - 16737q-59 - 2785q-58 + 13775q-57 + 20160q-56 + 14623q-55 - 5335q-54 - 19234q-53 - 19357q-52 - 6137q-51 + 11658q-50 + 20475q-49 + 16974q-48 - 2763q-47 - 17824q-46 - 19992q-45 - 8121q-44 + 9454q-43 + 19571q-42 + 17839q-41 - 674q-40 - 15841q-39 - 19604q-38 - 9489q-37 + 7003q-36 + 17905q-35 + 18028q-34 + 1665q-33 - 13001q-32 - 18460q-31 - 10874q-30 + 3666q-29 + 15100q-28 + 17597q-27 + 4622q-26 - 8770q-25 - 16032q-24 - 12000q-23 - 634q-22 + 10647q-21 + 15783q-20 + 7487q-19 - 3341q-18 - 11724q-17 - 11704q-16 - 4787q-15 + 4886q-14 + 11846q-13 + 8666q-12 + 1812q-11 - 5958q-10 - 9007q-9 - 6883q-8 - 481q-7 + 6315q-6 + 7057q-5 + 4580q-4 - 647q-3 - 4542q-2 - 5871q-1 - 3296 + 1301q + 3520q2 + 4106q3 + 2059q4 - 559q5 - 2924q6 - 2990q7 - 1150q8 + 422q9 + 1869q10 + 1902q11 + 1113q12 - 453q13 - 1254q14 - 1105q15 - 699q16 + 153q17 + 669q18 + 847q19 + 349q20 - 85q21 - 313q22 - 436q23 - 256q24 - 22q25 + 221q26 + 187q27 + 122q28 + 38q29 - 68q30 - 97q31 - 76q32 - 2q33 + 16q34 + 29q35 + 29q36 + 14q37 - 5q38 - 12q39 - 6q40 - 4q41 + 2q44 + q45 |
7 | q-175 - 3q-174 + q-173 + 4q-172 - 3q-171 - 3q-169 + 5q-168 + 5q-167 - 14q-166 + 2q-165 + 9q-164 - 5q-163 + 2q-162 - 12q-161 + 10q-160 + 31q-159 - 29q-158 - 3q-157 + 10q-156 - 19q-155 + 4q-154 - 56q-153 + 8q-152 + 96q-151 + 3q-150 + 48q-149 + 33q-148 - 71q-147 - 53q-146 - 227q-145 - 147q-144 + 141q-143 + 151q-142 + 400q-141 + 363q-140 + 30q-139 - 175q-138 - 816q-137 - 946q-136 - 401q-135 + 148q-134 + 1307q-133 + 1850q-132 + 1320q-131 + 407q-130 - 1765q-129 - 3325q-128 - 3167q-127 - 1759q-126 + 1931q-125 + 5155q-124 + 6031q-123 + 4553q-122 - 916q-121 - 6983q-120 - 10235q-119 - 9380q-118 - 1826q-117 + 8105q-116 + 15166q-115 + 16421q-114 + 7378q-113 - 7265q-112 - 20196q-111 - 25632q-110 - 16206q-109 + 3551q-108 + 24029q-107 + 35978q-106 + 28217q-105 + 4022q-104 - 25158q-103 - 46248q-102 - 42763q-101 - 15486q-100 + 22765q-99 + 54737q-98 + 58100q-97 + 30171q-96 - 16168q-95 - 60074q-94 - 72739q-93 - 46641q-92 + 6102q-91 + 61556q-90 + 84781q-89 + 63046q-88 + 6475q-87 - 59228q-86 - 93364q-85 - 77718q-84 - 19784q-83 + 53890q-82 + 98054q-81 + 89477q-80 + 32413q-79 - 46793q-78 - 99400q-77 - 97776q-76 - 43106q-75 + 39138q-74 + 98134q-73 + 102845q-72 + 51480q-71 - 31979q-70 - 95431q-69 - 105234q-68 - 57352q-67 + 25794q-66 + 91890q-65 + 105793q-64 + 61376q-63 - 20680q-62 - 88259q-61 - 105234q-60 - 63973q-59 + 16348q-58 + 84545q-57 + 104008q-56 + 65923q-55 - 12238q-54 - 80631q-53 - 102489q-52 - 67759q-51 + 7962q-50 + 76233q-49 + 100458q-48 + 69606q-47 - 2766q-46 - 70663q-45 - 97919q-44 - 71812q-43 - 3410q-42 + 63809q-41 + 94171q-40 + 73802q-39 + 10861q-38 - 54896q-37 - 88915q-36 - 75517q-35 - 19186q-34 + 44203q-33 + 81593q-32 + 75845q-31 + 27847q-30 - 31605q-29 - 71801q-28 - 74330q-27 - 36031q-26 + 17927q-25 + 59682q-24 + 70147q-23 + 42400q-22 - 4128q-21 - 45426q-20 - 62822q-19 - 46145q-18 - 8641q-17 + 30243q-16 + 52700q-15 + 46212q-14 + 18660q-13 - 15237q-12 - 40118q-11 - 42533q-10 - 25236q-9 + 2077q-8 + 26853q-7 + 35465q-6 + 27326q-5 + 7879q-4 - 13969q-3 - 26196q-2 - 25625q-1 - 13814 + 3546q + 16308q2 + 20608q3 + 15672q4 + 3858q5 - 7497q6 - 14260q7 - 14103q8 - 7412q9 + 823q10 + 7692q11 + 10597q12 + 8114q13 + 2946q14 - 2686q15 - 6358q16 - 6453q17 - 4322q18 - 697q19 + 2823q20 + 4256q21 + 3829q22 + 1901q23 - 420q24 - 1898q25 - 2574q26 - 2088q27 - 689q28 + 530q29 + 1304q30 + 1352q31 + 861q32 + 292q33 - 371q34 - 752q35 - 656q36 - 369q37 - 17q38 + 217q39 + 289q40 + 298q41 + 162q42 - 24q43 - 107q44 - 128q45 - 90q46 - 44q47 - 6q48 + 38q49 + 49q50 + 29q51 + 9q52 - q53 - 9q54 - 7q55 - 9q56 - 3q57 + 2q59 + 2q61 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 144]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[18, 11, 19, 12], X[5, 15, 6, 14], > X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[20, 13, 1, 14], > X[12, 19, 13, 20], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 144]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, > -8] |
In[4]:= | DTCode[Knot[10, 144]] |
Out[4]= | DTCode[4, 10, 14, 16, 2, -18, -20, 8, 6, -12] |
In[5]:= | br = BR[Knot[10, 144]] |
Out[5]= | BR[4, {-1, -1, -2, 1, -2, -1, 3, -2, -1, 3, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 144]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 144]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 144]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 144]][t] |
Out[10]= | 3 10 2 -13 - -- + -- + 10 t - 3 t 2 t t |
In[11]:= | Conway[Knot[10, 144]][z] |
Out[11]= | 2 4 1 - 2 z - 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 144], Knot[11, NonAlternating, 99]} |
In[13]:= | {KnotDet[Knot[10, 144]], KnotSignature[Knot[10, 144]]} |
Out[13]= | {39, -2} |
In[14]:= | Jones[Knot[10, 144]][q] |
Out[14]= | -7 3 5 6 7 7 5 -3 + q - -- + -- - -- + -- - -- + - + 2 q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 144]} |
In[16]:= | A2Invariant[Knot[10, 144]][q] |
Out[16]= | -22 -20 -18 2 2 2 -6 3 2 2 4 1 + q - q - q + --- + --- - -- - q - -- + -- + q + 2 q 16 12 8 4 2 q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 144]][a, z] |
Out[17]= | 2 4 2 2 2 6 2 2 4 4 4 3 - 4 a + 2 a + 2 z - 5 a z + a z - 2 a z - a z |
In[18]:= | Kauffman[Knot[10, 144]][a, z] |
Out[18]= | 2 4 3 5 2 2 2 4 2 6 2 3 + 4 a + 2 a - 2 a z - 2 a z - 7 z - 12 a z - 2 a z + 2 a z - 8 2 3 3 5 3 7 3 4 2 4 4 4 6 4 > a z + 8 a z + 4 a z - 4 a z + 3 z + 8 a z - 2 a z - 6 a z + 8 4 5 3 5 5 5 7 5 2 6 4 6 6 6 > a z - a z - 8 a z - 4 a z + 3 a z - 2 a z + 2 a z + 4 a z + 7 3 7 5 7 2 8 4 8 > a z + 4 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 144]], Vassiliev[3][Knot[10, 144]]} |
Out[19]= | {-2, 2} |
In[20]:= | Kh[Knot[10, 144]][q, t] |
Out[20]= | 2 4 1 2 1 3 2 3 3 4 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 3 3 4 2 t 3 2 > ----- + ---- + ---- + --- + q t + 2 q t 5 2 5 3 q q t q t q t |
In[21]:= | ColouredJones[Knot[10, 144], 2][q] |
Out[21]= | -20 3 -18 8 13 -15 25 25 10 44 32 21 -16 + q - --- + q + --- - --- - q + --- - --- - --- + --- - --- - -- + 19 17 16 14 13 12 11 10 9 q q q q q q q q q 54 29 26 49 17 24 31 5 2 3 4 5 > -- - -- - -- + -- - -- - -- + -- - - + 12 q + q - 6 q + 2 q + q 8 7 6 5 4 3 2 q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10144 |
|