© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.143
10143
10.145
10145
    10.144
KnotPlot
This page is passe. Go here instead!

   The Non Alternating Knot 10144   

Visit 10144's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10144's page at Knotilus!

Acknowledgement

10.144
KnotPlot

PD Presentation: X1425 X3,10,4,11 X18,11,19,12 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X20,13,1,14 X12,19,13,20 X9,2,10,3

Gauss Code: {-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 14 16 2 -18 -20 8 6 -12

Minimum Braid Representative:


Length is 11, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2 2 3 / NotAvailable 2

Alexander Polynomial: - 3t-2 + 10t-1 - 13 + 10t - 3t2

Conway Polynomial: 1 - 2z2 - 3z4

Other knots with the same Alexander/Conway Polynomial: {K11n99, ...}

Determinant and Signature: {39, -2}

Jones Polynomial: q-7 - 3q-6 + 5q-5 - 6q-4 + 7q-3 - 7q-2 + 5q-1 - 3 + 2q

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-22 - q-20 - q-18 + 2q-16 + 2q-12 - 2q-8 - q-6 - 3q-4 + 2q-2 + 1 + q2 + 2q4

HOMFLY-PT Polynomial: 3 + 2z2 - 4a2 - 5a2z2 - 2a2z4 + 2a4 - a4z4 + a6z2

Kauffman Polynomial: 3 - 7z2 + 3z4 - az5 + az7 + 4a2 - 12a2z2 + 8a2z4 - 2a2z6 + a2z8 - 2a3z + 8a3z3 - 8a3z5 + 4a3z7 + 2a4 - 2a4z2 - 2a4z4 + 2a4z6 + a4z8 - 2a5z + 4a5z3 - 4a5z5 + 3a5z7 + 2a6z2 - 6a6z4 + 4a6z6 - 4a7z3 + 3a7z5 - a8z2 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10144. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 3        2
j = 1       1 
j = -1      42 
j = -3     42  
j = -5    33   
j = -7   34    
j = -9  23     
j = -11 13      
j = -13 2       
j = -151        

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-20 - 3q-19 + q-18 + 8q-17 - 13q-16 - q-15 + 25q-14 - 25q-13 - 10q-12 + 44q-11 - 32q-10 - 21q-9 + 54q-8 - 29q-7 - 26q-6 + 49q-5 - 17q-4 - 24q-3 + 31q-2 - 5q-1 - 16 + 12q + q2 - 6q3 + 2q4 + q5
3 q-39 - 3q-38 + q-37 + 4q-36 + q-35 - 10q-34 - 4q-33 + 21q-32 + 9q-31 - 33q-30 - 23q-29 + 47q-28 + 46q-27 - 62q-26 - 75q-25 + 71q-24 + 111q-23 - 75q-22 - 144q-21 + 69q-20 + 176q-19 - 62q-18 - 196q-17 + 48q-16 + 208q-15 - 33q-14 - 208q-13 + 16q-12 + 198q-11 + 5q-10 - 184q-9 - 20q-8 + 156q-7 + 37q-6 - 126q-5 - 50q-4 + 96q-3 + 51q-2 - 59q-1 - 52 + 37q + 38q2 - 11q3 - 30q4 + 4q5 + 13q6 + 5q7 - 9q8 - q9 + 2q11
4 q-64 - 3q-63 + q-62 + 4q-61 - 3q-60 + 4q-59 - 13q-58 + 4q-57 + 17q-56 - 8q-55 + 12q-54 - 49q-53 + q-52 + 59q-51 + 9q-50 + 32q-49 - 141q-48 - 46q-47 + 120q-46 + 95q-45 + 123q-44 - 289q-43 - 205q-42 + 134q-41 + 262q-40 + 345q-39 - 412q-38 - 462q-37 + 22q-36 + 415q-35 + 664q-34 - 419q-33 - 700q-32 - 183q-31 + 463q-30 + 943q-29 - 326q-28 - 814q-27 - 375q-26 + 409q-25 + 1085q-24 - 201q-23 - 796q-22 - 493q-21 + 294q-20 + 1081q-19 - 61q-18 - 676q-17 - 552q-16 + 137q-15 + 962q-14 + 91q-13 - 475q-12 - 547q-11 - 47q-10 + 732q-9 + 217q-8 - 218q-7 - 454q-6 - 202q-5 + 432q-4 + 245q-3 + 8q-2 - 273q-1 - 241 + 156q + 158q2 + 108q3 - 86q4 - 159q5 + 6q6 + 44q7 + 81q8 + 9q9 - 54q10 - 19q11 - 7q12 + 23q13 + 14q14 - 5q15 - 4q16 - 6q17 + 2q19 + q20
5 q-95 - 3q-94 + q-93 + 4q-92 - 3q-91 + q-89 - 5q-88 + 12q-86 - q-85 - 10q-84 - 5q-83 - 9q-82 + 8q-81 + 33q-80 + 26q-79 - 25q-78 - 67q-77 - 56q-76 + 15q-75 + 123q-74 + 148q-73 + 15q-72 - 206q-71 - 294q-70 - 101q-69 + 267q-68 + 518q-67 + 312q-66 - 302q-65 - 815q-64 - 643q-63 + 239q-62 + 1127q-61 + 1122q-60 - 19q-59 - 1424q-58 - 1709q-57 - 347q-56 + 1611q-55 + 2328q-54 + 883q-53 - 1665q-52 - 2927q-51 - 1481q-50 + 1554q-49 + 3403q-48 + 2119q-47 - 1333q-46 - 3740q-45 - 2672q-44 + 1020q-43 + 3912q-42 + 3138q-41 - 695q-40 - 3956q-39 - 3451q-38 + 370q-37 + 3881q-36 + 3667q-35 - 86q-34 - 3736q-33 - 3767q-32 - 176q-31 + 3520q-30 + 3785q-29 + 447q-28 - 3248q-27 - 3764q-26 - 692q-25 + 2904q-24 + 3649q-23 + 984q-22 - 2471q-21 - 3508q-20 - 1255q-19 + 1980q-18 + 3237q-17 + 1520q-16 - 1407q-15 - 2882q-14 - 1731q-13 + 817q-12 + 2432q-11 + 1810q-10 - 246q-9 - 1865q-8 - 1784q-7 - 248q-6 + 1311q-5 + 1576q-4 + 571q-3 - 712q-2 - 1283q-1 - 753 + 279q + 885q2 + 733q3 + 88q4 - 537q5 - 615q6 - 221q7 + 208q8 + 410q9 + 293q10 - 37q11 - 236q12 - 200q13 - 77q14 + 79q15 + 152q16 + 73q17 - 19q18 - 48q19 - 58q20 - 24q21 + 24q22 + 27q23 + 9q24 + 7q25 - 9q26 - 9q27 - 3q28 + 2q29 + 2q31
6 q-132 - 3q-131 + q-130 + 4q-129 - 3q-128 - 3q-126 + 9q-125 - 9q-124 - 5q-123 + 19q-122 - 11q-121 - 4q-120 - 11q-119 + 28q-118 - 14q-117 - 10q-116 + 55q-115 - 23q-114 - 32q-113 - 64q-112 + 51q-111 - 26q-110 + 23q-109 + 199q-108 + 20q-107 - 84q-106 - 272q-105 - 71q-104 - 167q-103 + 96q-102 + 636q-101 + 423q-100 + 65q-99 - 656q-98 - 659q-97 - 960q-96 - 154q-95 + 1396q-94 + 1722q-93 + 1204q-92 - 658q-91 - 1764q-90 - 3172q-89 - 1827q-88 + 1671q-87 + 3957q-86 + 4300q-85 + 1156q-84 - 2329q-83 - 6725q-82 - 5970q-81 - 251q-80 + 5731q-79 + 9032q-78 + 5819q-77 - 486q-76 - 9841q-75 - 11867q-74 - 5202q-73 + 5031q-72 + 13224q-71 + 12175q-70 + 4288q-69 - 10422q-68 - 16994q-67 - 11590q-66 + 1572q-65 + 14793q-64 + 17516q-63 + 10120q-62 - 8355q-61 - 19384q-60 - 16737q-59 - 2785q-58 + 13775q-57 + 20160q-56 + 14623q-55 - 5335q-54 - 19234q-53 - 19357q-52 - 6137q-51 + 11658q-50 + 20475q-49 + 16974q-48 - 2763q-47 - 17824q-46 - 19992q-45 - 8121q-44 + 9454q-43 + 19571q-42 + 17839q-41 - 674q-40 - 15841q-39 - 19604q-38 - 9489q-37 + 7003q-36 + 17905q-35 + 18028q-34 + 1665q-33 - 13001q-32 - 18460q-31 - 10874q-30 + 3666q-29 + 15100q-28 + 17597q-27 + 4622q-26 - 8770q-25 - 16032q-24 - 12000q-23 - 634q-22 + 10647q-21 + 15783q-20 + 7487q-19 - 3341q-18 - 11724q-17 - 11704q-16 - 4787q-15 + 4886q-14 + 11846q-13 + 8666q-12 + 1812q-11 - 5958q-10 - 9007q-9 - 6883q-8 - 481q-7 + 6315q-6 + 7057q-5 + 4580q-4 - 647q-3 - 4542q-2 - 5871q-1 - 3296 + 1301q + 3520q2 + 4106q3 + 2059q4 - 559q5 - 2924q6 - 2990q7 - 1150q8 + 422q9 + 1869q10 + 1902q11 + 1113q12 - 453q13 - 1254q14 - 1105q15 - 699q16 + 153q17 + 669q18 + 847q19 + 349q20 - 85q21 - 313q22 - 436q23 - 256q24 - 22q25 + 221q26 + 187q27 + 122q28 + 38q29 - 68q30 - 97q31 - 76q32 - 2q33 + 16q34 + 29q35 + 29q36 + 14q37 - 5q38 - 12q39 - 6q40 - 4q41 + 2q44 + q45
7 q-175 - 3q-174 + q-173 + 4q-172 - 3q-171 - 3q-169 + 5q-168 + 5q-167 - 14q-166 + 2q-165 + 9q-164 - 5q-163 + 2q-162 - 12q-161 + 10q-160 + 31q-159 - 29q-158 - 3q-157 + 10q-156 - 19q-155 + 4q-154 - 56q-153 + 8q-152 + 96q-151 + 3q-150 + 48q-149 + 33q-148 - 71q-147 - 53q-146 - 227q-145 - 147q-144 + 141q-143 + 151q-142 + 400q-141 + 363q-140 + 30q-139 - 175q-138 - 816q-137 - 946q-136 - 401q-135 + 148q-134 + 1307q-133 + 1850q-132 + 1320q-131 + 407q-130 - 1765q-129 - 3325q-128 - 3167q-127 - 1759q-126 + 1931q-125 + 5155q-124 + 6031q-123 + 4553q-122 - 916q-121 - 6983q-120 - 10235q-119 - 9380q-118 - 1826q-117 + 8105q-116 + 15166q-115 + 16421q-114 + 7378q-113 - 7265q-112 - 20196q-111 - 25632q-110 - 16206q-109 + 3551q-108 + 24029q-107 + 35978q-106 + 28217q-105 + 4022q-104 - 25158q-103 - 46248q-102 - 42763q-101 - 15486q-100 + 22765q-99 + 54737q-98 + 58100q-97 + 30171q-96 - 16168q-95 - 60074q-94 - 72739q-93 - 46641q-92 + 6102q-91 + 61556q-90 + 84781q-89 + 63046q-88 + 6475q-87 - 59228q-86 - 93364q-85 - 77718q-84 - 19784q-83 + 53890q-82 + 98054q-81 + 89477q-80 + 32413q-79 - 46793q-78 - 99400q-77 - 97776q-76 - 43106q-75 + 39138q-74 + 98134q-73 + 102845q-72 + 51480q-71 - 31979q-70 - 95431q-69 - 105234q-68 - 57352q-67 + 25794q-66 + 91890q-65 + 105793q-64 + 61376q-63 - 20680q-62 - 88259q-61 - 105234q-60 - 63973q-59 + 16348q-58 + 84545q-57 + 104008q-56 + 65923q-55 - 12238q-54 - 80631q-53 - 102489q-52 - 67759q-51 + 7962q-50 + 76233q-49 + 100458q-48 + 69606q-47 - 2766q-46 - 70663q-45 - 97919q-44 - 71812q-43 - 3410q-42 + 63809q-41 + 94171q-40 + 73802q-39 + 10861q-38 - 54896q-37 - 88915q-36 - 75517q-35 - 19186q-34 + 44203q-33 + 81593q-32 + 75845q-31 + 27847q-30 - 31605q-29 - 71801q-28 - 74330q-27 - 36031q-26 + 17927q-25 + 59682q-24 + 70147q-23 + 42400q-22 - 4128q-21 - 45426q-20 - 62822q-19 - 46145q-18 - 8641q-17 + 30243q-16 + 52700q-15 + 46212q-14 + 18660q-13 - 15237q-12 - 40118q-11 - 42533q-10 - 25236q-9 + 2077q-8 + 26853q-7 + 35465q-6 + 27326q-5 + 7879q-4 - 13969q-3 - 26196q-2 - 25625q-1 - 13814 + 3546q + 16308q2 + 20608q3 + 15672q4 + 3858q5 - 7497q6 - 14260q7 - 14103q8 - 7412q9 + 823q10 + 7692q11 + 10597q12 + 8114q13 + 2946q14 - 2686q15 - 6358q16 - 6453q17 - 4322q18 - 697q19 + 2823q20 + 4256q21 + 3829q22 + 1901q23 - 420q24 - 1898q25 - 2574q26 - 2088q27 - 689q28 + 530q29 + 1304q30 + 1352q31 + 861q32 + 292q33 - 371q34 - 752q35 - 656q36 - 369q37 - 17q38 + 217q39 + 289q40 + 298q41 + 162q42 - 24q43 - 107q44 - 128q45 - 90q46 - 44q47 - 6q48 + 38q49 + 49q50 + 29q51 + 9q52 - q53 - 9q54 - 7q55 - 9q56 - 3q57 + 2q59 + 2q61


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 144]]
Out[2]=   
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[18, 11, 19, 12], X[5, 15, 6, 14], 
 
>   X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[20, 13, 1, 14], 
 
>   X[12, 19, 13, 20], X[9, 2, 10, 3]]
In[3]:=
GaussCode[Knot[10, 144]]
Out[3]=   
GaussCode[-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, 3, -9, 8, 4, -7, 6, -5, -3, 9, 
 
>   -8]
In[4]:=
DTCode[Knot[10, 144]]
Out[4]=   
DTCode[4, 10, 14, 16, 2, -18, -20, 8, 6, -12]
In[5]:=
br = BR[Knot[10, 144]]
Out[5]=   
BR[4, {-1, -1, -2, 1, -2, -1, 3, -2, -1, 3, 2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 11}
In[7]:=
BraidIndex[Knot[10, 144]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[10, 144]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 144]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 2, 2, 3, NotAvailable, 2}
In[10]:=
alex = Alexander[Knot[10, 144]][t]
Out[10]=   
      3    10             2
-13 - -- + -- + 10 t - 3 t
       2   t
      t
In[11]:=
Conway[Knot[10, 144]][z]
Out[11]=   
       2      4
1 - 2 z  - 3 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 144], Knot[11, NonAlternating, 99]}
In[13]:=
{KnotDet[Knot[10, 144]], KnotSignature[Knot[10, 144]]}
Out[13]=   
{39, -2}
In[14]:=
Jones[Knot[10, 144]][q]
Out[14]=   
      -7   3    5    6    7    7    5
-3 + q   - -- + -- - -- + -- - -- + - + 2 q
            6    5    4    3    2   q
           q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 144]}
In[16]:=
A2Invariant[Knot[10, 144]][q]
Out[16]=   
     -22    -20    -18    2     2    2     -6   3    2     2      4
1 + q    - q    - q    + --- + --- - -- - q   - -- + -- + q  + 2 q
                          16    12    8          4    2
                         q     q     q          q    q
In[17]:=
HOMFLYPT[Knot[10, 144]][a, z]
Out[17]=   
       2      4      2      2  2    6  2      2  4    4  4
3 - 4 a  + 2 a  + 2 z  - 5 a  z  + a  z  - 2 a  z  - a  z
In[18]:=
Kauffman[Knot[10, 144]][a, z]
Out[18]=   
       2      4      3        5        2       2  2      4  2      6  2
3 + 4 a  + 2 a  - 2 a  z - 2 a  z - 7 z  - 12 a  z  - 2 a  z  + 2 a  z  - 
 
     8  2      3  3      5  3      7  3      4      2  4      4  4      6  4
>   a  z  + 8 a  z  + 4 a  z  - 4 a  z  + 3 z  + 8 a  z  - 2 a  z  - 6 a  z  + 
 
     8  4      5      3  5      5  5      7  5      2  6      4  6      6  6
>   a  z  - a z  - 8 a  z  - 4 a  z  + 3 a  z  - 2 a  z  + 2 a  z  + 4 a  z  + 
 
       7      3  7      5  7    2  8    4  8
>   a z  + 4 a  z  + 3 a  z  + a  z  + a  z
In[19]:=
{Vassiliev[2][Knot[10, 144]], Vassiliev[3][Knot[10, 144]]}
Out[19]=   
{-2, 2}
In[20]:=
Kh[Knot[10, 144]][q, t]
Out[20]=   
2    4     1        2        1        3        2       3       3       4
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q        q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      3      3      4     2 t            3  2
>   ----- + ---- + ---- + --- + q t + 2 q  t
     5  2    5      3      q
    q  t    q  t   q  t
In[21]:=
ColouredJones[Knot[10, 144], 2][q]
Out[21]=   
       -20    3     -18    8    13     -15   25    25    10    44    32    21
-16 + q    - --- + q    + --- - --- - q    + --- - --- - --- + --- - --- - -- + 
              19           17    16           14    13    12    11    10    9
             q            q     q            q     q     q     q     q     q
 
    54   29   26   49   17   24   31   5           2      3      4    5
>   -- - -- - -- + -- - -- - -- + -- - - + 12 q + q  - 6 q  + 2 q  + q
     8    7    6    5    4    3    2   q
    q    q    q    q    q    q    q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10144
10.143
10143
10.145
10145