© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10143Visit 10143's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10143's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,4,11,3 X5,14,6,15 X7,16,8,17 X15,6,16,7 X17,20,18,1 X11,18,12,19 X19,12,20,13 X13,8,14,9 X2,10,3,9 |
Gauss Code: | {1, -10, 2, -1, -3, 5, -4, 9, 10, -2, -7, 8, -9, 3, -5, 4, -6, 7, -8, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 10 -14 -16 2 -18 -8 -6 -20 -12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 3t-2 + 6t-1 - 7 + 6t - 3t2 + t3 |
Conway Polynomial: | 1 + 3z2 + 3z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {810, K11n106, ...} |
Determinant and Signature: | {27, -2} |
Jones Polynomial: | - q-8 + 2q-7 - 3q-6 + 4q-5 - 5q-4 + 5q-3 - 3q-2 + 3q-1 - 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-24 - q-20 + q-16 - q-14 + q-12 + 2q-8 + 2q-6 + q-2 - 1 |
HOMFLY-PT Polynomial: | - 2a2z2 - a2z4 + 3a4 + 8a4z2 + 5a4z4 + a4z6 - 2a6 - 3a6z2 - a6z4 |
Kauffman Polynomial: | - az + az3 - 4a2z2 + 3a2z4 - 3a3z + 7a3z3 - 3a3z5 + a3z7 + 3a4 - 10a4z2 + 11a4z4 - 4a4z6 + a4z8 - 5a5z + 14a5z3 - 10a5z5 + 3a5z7 + 2a6 - 3a6z2 + 2a6z4 - 2a6z6 + a6z8 - 2a7z + 5a7z3 - 6a7z5 + 2a7z7 + 3a8z2 - 6a8z4 + 2a8z6 + a9z - 3a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, -5} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10143. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 2q-22 + 5q-20 - 6q-19 - 3q-18 + 12q-17 - 7q-16 - 10q-15 + 18q-14 - 4q-13 - 17q-12 + 21q-11 - q-10 - 21q-9 + 18q-8 + 2q-7 - 16q-6 + 11q-5 + 4q-4 - 8q-3 + 4q-2 + 2q-1 - 2 |
3 | - q-45 + 2q-44 - 2q-42 - 2q-41 + 5q-40 + 4q-39 - 7q-38 - 9q-37 + 9q-36 + 14q-35 - 6q-34 - 22q-33 + q-32 + 27q-31 + 8q-30 - 29q-29 - 19q-28 + 28q-27 + 30q-26 - 24q-25 - 40q-24 + 19q-23 + 48q-22 - 15q-21 - 53q-20 + 10q-19 + 56q-18 - 3q-17 - 59q-16 + 2q-15 + 50q-14 + 8q-13 - 49q-12 - 8q-11 + 33q-10 + 17q-9 - 27q-8 - 12q-7 + 12q-6 + 15q-5 - 6q-4 - 7q-3 - q-2 + 5q-1 + 2 - 2q - q2 - q3 + q4 |
4 | q-74 - 2q-73 + 2q-71 - q-70 + 3q-69 - 7q-68 + 7q-66 - q-65 + 10q-64 - 19q-63 - 9q-62 + 13q-61 + 5q-60 + 31q-59 - 28q-58 - 28q-57 - q-55 + 69q-54 - 8q-53 - 33q-52 - 33q-51 - 45q-50 + 87q-49 + 35q-48 + 12q-47 - 45q-46 - 119q-45 + 54q-44 + 63q-43 + 89q-42 - 15q-41 - 181q-40 - 8q-39 + 58q-38 + 156q-37 + 34q-36 - 213q-35 - 60q-34 + 39q-33 + 194q-32 + 72q-31 - 222q-30 - 95q-29 + 24q-28 + 211q-27 + 95q-26 - 208q-25 - 116q-24 + 3q-23 + 197q-22 + 115q-21 - 159q-20 - 123q-19 - 36q-18 + 149q-17 + 125q-16 - 82q-15 - 95q-14 - 70q-13 + 71q-12 + 103q-11 - 8q-10 - 39q-9 - 67q-8 + 3q-7 + 52q-6 + 20q-5 + 5q-4 - 32q-3 - 18q-2 + 10q-1 + 10 + 11q - 4q2 - 8q3 - 2q4 + 3q6 + q7 - q8 |
5 | - q-110 + 2q-109 - 2q-107 + q-106 - q-104 + 3q-103 + q-102 - 6q-101 - 2q-100 + 3q-99 + 2q-98 + 8q-97 + 5q-96 - 10q-95 - 18q-94 - 7q-93 + 8q-92 + 23q-91 + 28q-90 - q-89 - 33q-88 - 43q-87 - 21q-86 + 25q-85 + 61q-84 + 52q-83 + 3q-82 - 59q-81 - 89q-80 - 50q-79 + 33q-78 + 99q-77 + 111q-76 + 35q-75 - 84q-74 - 161q-73 - 125q-72 + 19q-71 + 180q-70 + 227q-69 + 89q-68 - 159q-67 - 316q-66 - 220q-65 + 92q-64 + 373q-63 + 359q-62 + 12q-61 - 399q-60 - 486q-59 - 127q-58 + 391q-57 + 587q-56 + 243q-55 - 362q-54 - 664q-53 - 344q-52 + 330q-51 + 713q-50 + 420q-49 - 293q-48 - 745q-47 - 481q-46 + 268q-45 + 770q-44 + 513q-43 - 244q-42 - 772q-41 - 549q-40 + 211q-39 + 786q-38 + 571q-37 - 193q-36 - 748q-35 - 599q-34 + 121q-33 + 736q-32 + 618q-31 - 73q-30 - 648q-29 - 625q-28 - 35q-27 + 571q-26 + 609q-25 + 104q-24 - 419q-23 - 562q-22 - 206q-21 + 293q-20 + 474q-19 + 238q-18 - 125q-17 - 363q-16 - 271q-15 + 25q-14 + 237q-13 + 225q-12 + 72q-11 - 121q-10 - 181q-9 - 93q-8 + 38q-7 + 106q-6 + 91q-5 + 15q-4 - 51q-3 - 65q-2 - 28q-1 + 15 + 31q + 25q2 + 5q3 - 14q4 - 16q5 - 3q6 + q7 + 5q8 + 4q9 - 2q11 |
6 | q-153 - 2q-152 + 2q-150 - q-149 - 2q-147 + 5q-146 - 4q-145 - 2q-144 + 8q-143 - 2q-142 - 2q-141 - 9q-140 + 9q-139 - 8q-138 - 4q-137 + 22q-136 + 6q-135 + 3q-134 - 25q-133 + 6q-132 - 30q-131 - 22q-130 + 40q-129 + 34q-128 + 41q-127 - 22q-126 + 13q-125 - 74q-124 - 89q-123 + 3q-122 + 41q-121 + 103q-120 + 40q-119 + 112q-118 - 55q-117 - 154q-116 - 122q-115 - 84q-114 + 43q-113 + 53q-112 + 295q-111 + 152q-110 - 7q-109 - 134q-108 - 258q-107 - 256q-106 - 249q-105 + 251q-104 + 366q-103 + 418q-102 + 266q-101 - 77q-100 - 494q-99 - 838q-98 - 309q-97 + 113q-96 + 700q-95 + 949q-94 + 689q-93 - 177q-92 - 1207q-91 - 1140q-90 - 741q-89 + 374q-88 + 1368q-87 + 1691q-86 + 719q-85 - 971q-84 - 1699q-83 - 1774q-82 - 466q-81 + 1239q-80 + 2413q-79 + 1729q-78 - 317q-77 - 1786q-76 - 2518q-75 - 1347q-74 + 792q-73 + 2712q-72 + 2445q-71 + 323q-70 - 1619q-69 - 2874q-68 - 1936q-67 + 380q-66 + 2765q-65 + 2805q-64 + 718q-63 - 1457q-62 - 2991q-61 - 2220q-60 + 139q-59 + 2749q-58 + 2952q-57 + 927q-56 - 1361q-55 - 3025q-54 - 2365q-53 - 21q-52 + 2685q-51 + 3030q-50 + 1127q-49 - 1211q-48 - 2979q-47 - 2512q-46 - 286q-45 + 2439q-44 + 3028q-43 + 1440q-42 - 811q-41 - 2691q-40 - 2614q-39 - 762q-38 + 1817q-37 + 2741q-36 + 1760q-35 - 92q-34 - 1957q-33 - 2417q-32 - 1277q-31 + 820q-30 + 1972q-29 + 1756q-28 + 660q-27 - 862q-26 - 1719q-25 - 1415q-24 - 138q-23 + 885q-22 + 1223q-21 + 950q-20 + 86q-19 - 737q-18 - 989q-17 - 539q-16 + 29q-15 + 447q-14 + 653q-13 + 419q-12 - 31q-11 - 356q-10 - 366q-9 - 230q-8 - 41q-7 + 196q-6 + 254q-5 + 144q-4 - 3q-3 - 82q-2 - 112q-1 - 107 - 15q + 50q2 + 59q3 + 36q4 + 15q5 - 6q6 - 33q7 - 18q8 - 4q9 + 4q10 + 4q11 + 5q12 + 7q13 - 3q14 - q15 - q18 - q19 + q20 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 143]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[5, 14, 6, 15], X[7, 16, 8, 17], > X[15, 6, 16, 7], X[17, 20, 18, 1], X[11, 18, 12, 19], X[19, 12, 20, 13], > X[13, 8, 14, 9], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 143]] |
Out[3]= | GaussCode[1, -10, 2, -1, -3, 5, -4, 9, 10, -2, -7, 8, -9, 3, -5, 4, -6, 7, -8, > 6] |
In[4]:= | DTCode[Knot[10, 143]] |
Out[4]= | DTCode[4, 10, -14, -16, 2, -18, -8, -6, -20, -12] |
In[5]:= | br = BR[Knot[10, 143]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -2, 1, 1, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 143]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 143]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 143]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 143]][t] |
Out[10]= | -3 3 6 2 3 -7 + t - -- + - + 6 t - 3 t + t 2 t t |
In[11]:= | Conway[Knot[10, 143]][z] |
Out[11]= | 2 4 6 1 + 3 z + 3 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 10], Knot[10, 143], Knot[11, NonAlternating, 106]} |
In[13]:= | {KnotDet[Knot[10, 143]], KnotSignature[Knot[10, 143]]} |
Out[13]= | {27, -2} |
In[14]:= | Jones[Knot[10, 143]][q] |
Out[14]= | -8 2 3 4 5 5 3 3 -1 - q + -- - -- + -- - -- + -- - -- + - 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 143]} |
In[16]:= | A2Invariant[Knot[10, 143]][q] |
Out[16]= | -24 -20 -16 -14 -12 2 2 -2 -1 - q - q + q - q + q + -- + -- + q 8 6 q q |
In[17]:= | HOMFLYPT[Knot[10, 143]][a, z] |
Out[17]= | 4 6 2 2 4 2 6 2 2 4 4 4 6 4 4 6 3 a - 2 a - 2 a z + 8 a z - 3 a z - a z + 5 a z - a z + a z |
In[18]:= | Kauffman[Knot[10, 143]][a, z] |
Out[18]= | 4 6 3 5 7 9 2 2 4 2 3 a + 2 a - a z - 3 a z - 5 a z - 2 a z + a z - 4 a z - 10 a z - 6 2 8 2 3 3 3 5 3 7 3 9 3 > 3 a z + 3 a z + a z + 7 a z + 14 a z + 5 a z - 3 a z + 2 4 4 4 6 4 8 4 3 5 5 5 7 5 > 3 a z + 11 a z + 2 a z - 6 a z - 3 a z - 10 a z - 6 a z + 9 5 4 6 6 6 8 6 3 7 5 7 7 7 4 8 > a z - 4 a z - 2 a z + 2 a z + a z + 3 a z + 2 a z + a z + 6 8 > a z |
In[19]:= | {Vassiliev[2][Knot[10, 143]], Vassiliev[3][Knot[10, 143]]} |
Out[19]= | {3, -5} |
In[20]:= | Kh[Knot[10, 143]][q, t] |
Out[20]= | 2 2 1 1 1 2 1 2 2 3 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 2 2 3 1 2 > ----- + ----- + ----- + ---- + ---- + q t 7 3 7 2 5 2 5 3 q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 143], 2][q] |
Out[21]= | -23 2 5 6 3 12 7 10 18 4 17 21 -2 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 22 20 19 18 17 16 15 14 13 12 11 q q q q q q q q q q q -10 21 18 2 16 11 4 8 4 2 > q - -- + -- + -- - -- + -- + -- - -- + -- + - 9 8 7 6 5 4 3 2 q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10143 |
|