© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10141Visit 10141's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10141's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X14,6,15,5 X16,8,17,7 X6,16,7,15 X17,20,18,1 X11,18,12,19 X19,12,20,13 X8,14,9,13 X9,2,10,3 |
Gauss Code: | {-1, 10, -2, 1, 3, -5, 4, -9, -10, 2, -7, 8, 9, -3, 5, -4, -6, 7, -8, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 10 -14 -16 2 18 -8 -6 20 12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 3t-2 - 4t-1 + 5 - 4t + 3t2 - t3 |
Conway Polynomial: | 1 - z2 - 3z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {85, ...} |
Determinant and Signature: | {21, 0} |
Jones Polynomial: | q-6 - 2q-5 + 2q-4 - 3q-3 + 4q-2 - 3q-1 + 3 - 2q + q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-18 - q-12 - q-10 + q-8 + q-4 + q2 + q6 |
HOMFLY-PT Polynomial: | 2 + 3z2 + z4 - 2a2 - 7a2z2 - 5a2z4 - a2z6 + a4 + 3a4z2 + a4z4 |
Kauffman Polynomial: | a-2z2 - a-1z + 2a-1z3 + 2 - 4z2 + 3z4 - 3az + 5az3 - 3az5 + az7 + 2a2 - 9a2z2 + 8a2z4 - 4a2z6 + a2z8 - 4a3z + 13a3z3 - 12a3z5 + 3a3z7 + a4 - a4z2 + a4z4 - 3a4z6 + a4z8 - 2a5z + 10a5z3 - 9a5z5 + 2a5z7 + 3a6z2 - 4a6z4 + a6z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10141. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-18 - 2q-17 - q-16 + 5q-15 - 3q-14 - 4q-13 + 8q-12 - q-11 - 8q-10 + 7q-9 + q-8 - 9q-7 + 6q-6 + 4q-5 - 8q-4 + 3q-3 + 6q-2 - 6q-1 + 1 + 3q - 3q2 + q3 - q5 + q6 |
3 | q-36 - 2q-35 - q-34 + 2q-33 + 4q-32 - 2q-31 - 7q-30 + q-29 + 9q-28 + 2q-27 - 10q-26 - 6q-25 + 8q-24 + 9q-23 - 6q-22 - 8q-21 + 2q-20 + 8q-19 + q-18 - 4q-17 - 3q-16 - q-15 + 4q-14 + 4q-13 - 4q-12 - 10q-11 + 7q-10 + 11q-9 - 6q-8 - 16q-7 + 9q-6 + 17q-5 - 6q-4 - 20q-3 + 6q-2 + 18q-1 - 17q - 3q2 + 12q3 + 6q4 - 7q5 - 6q6 + 2q7 + 6q8 - q9 - 2q10 - 2q11 + 2q12 |
4 | q-60 - 2q-59 - q-58 + 2q-57 + q-56 + 5q-55 - 6q-54 - 5q-53 + 17q-50 - 4q-49 - 9q-48 - 7q-47 - 10q-46 + 24q-45 + 5q-44 - 6q-42 - 25q-41 + 16q-40 + 3q-39 + 8q-38 + 8q-37 - 21q-36 + 9q-35 - 14q-34 - 3q-33 + 18q-32 - q-31 + 23q-30 - 24q-29 - 30q-28 + 9q-27 + 15q-26 + 51q-25 - 19q-24 - 57q-23 - 12q-22 + 20q-21 + 75q-20 - 4q-19 - 75q-18 - 30q-17 + 21q-16 + 89q-15 + 8q-14 - 87q-13 - 42q-12 + 25q-11 + 100q-10 + 16q-9 - 95q-8 - 54q-7 + 26q-6 + 104q-5 + 28q-4 - 87q-3 - 63q-2 + 7q-1 + 91 + 43q - 57q2 - 56q3 - 16q4 + 57q5 + 40q6 - 20q7 - 29q8 - 23q9 + 21q10 + 21q11 - q12 - 7q13 - 13q14 + 5q15 + 6q16 + q17 - q18 - 4q19 + q20 + q21 |
5 | q-90 - 2q-89 - q-88 + 2q-87 + q-86 + 2q-85 + q-84 - 4q-83 - 7q-82 + 4q-80 + 7q-79 + 8q-78 - 12q-76 - 15q-75 - 3q-74 + 8q-73 + 17q-72 + 17q-71 - q-70 - 19q-69 - 21q-68 - 9q-67 + 6q-66 + 21q-65 + 21q-64 + 2q-63 - 11q-62 - 17q-61 - 13q-60 - 4q-59 + 6q-58 + 9q-57 + 16q-56 + 17q-55 + 6q-54 - 14q-53 - 36q-52 - 36q-51 - 2q-50 + 46q-49 + 68q-48 + 31q-47 - 39q-46 - 92q-45 - 78q-44 + 19q-43 + 111q-42 + 112q-41 + 16q-40 - 104q-39 - 154q-38 - 58q-37 + 101q-36 + 176q-35 + 96q-34 - 74q-33 - 195q-32 - 138q-31 + 56q-30 + 205q-29 + 165q-28 - 29q-27 - 208q-26 - 196q-25 + 11q-24 + 214q-23 + 212q-22 + 2q-21 - 214q-20 - 232q-19 - 12q-18 + 226q-17 + 241q-16 + 15q-15 - 227q-14 - 258q-13 - 21q-12 + 234q-11 + 266q-10 + 37q-9 - 228q-8 - 279q-7 - 55q-6 + 214q-5 + 275q-4 + 82q-3 - 178q-2 - 267q-1 - 104 + 137q + 234q2 + 115q3 - 86q4 - 186q5 - 113q6 + 42q7 + 131q8 + 97q9 - 14q10 - 81q11 - 64q12 - 6q13 + 40q14 + 43q15 + 7q16 - 22q17 - 17q18 - 3q19 + 5q20 + 11q21 + q22 - 8q23 - 2q24 + 2q25 + 3q26 + 2q27 - 4q29 + q32 |
6 | q-126 - 2q-125 - q-124 + 2q-123 + q-122 + 2q-121 - 2q-120 + 3q-119 - 6q-118 - 7q-117 + 3q-116 + 3q-115 + 8q-114 + q-113 + 13q-112 - 10q-111 - 17q-110 - 8q-109 - 6q-108 + 9q-107 + 4q-106 + 40q-105 + 5q-104 - 13q-103 - 17q-102 - 28q-101 - 15q-100 - 20q-99 + 49q-98 + 27q-97 + 21q-96 + 9q-95 - 15q-94 - 26q-93 - 61q-92 + 13q-91 - 2q-90 + 21q-89 + 29q-88 + 27q-87 + 24q-86 - 32q-85 + 12q-84 - 38q-83 - 36q-82 - 39q-81 - 12q-80 + 43q-79 + 38q-78 + 106q-77 + 42q-76 - 13q-75 - 110q-74 - 145q-73 - 76q-72 - 15q-71 + 159q-70 + 194q-69 + 162q-68 - 20q-67 - 195q-66 - 236q-65 - 221q-64 + 27q-63 + 226q-62 + 345q-61 + 208q-60 - 49q-59 - 247q-58 - 415q-57 - 226q-56 + 65q-55 + 371q-54 + 404q-53 + 202q-52 - 74q-51 - 456q-50 - 444q-49 - 186q-48 + 242q-47 + 467q-46 + 417q-45 + 171q-44 - 366q-43 - 556q-42 - 410q-41 + 60q-40 + 435q-39 + 547q-38 + 387q-37 - 243q-36 - 597q-35 - 561q-34 - 90q-33 + 383q-32 + 617q-31 + 528q-30 - 154q-29 - 617q-28 - 648q-27 - 173q-26 + 360q-25 + 662q-24 + 598q-23 - 123q-22 - 643q-21 - 700q-20 - 207q-19 + 372q-18 + 709q-17 + 645q-16 - 109q-15 - 673q-14 - 760q-13 - 260q-12 + 357q-11 + 748q-10 + 719q-9 - 25q-8 - 632q-7 - 805q-6 - 379q-5 + 224q-4 + 683q-3 + 768q-2 + 151q-1 - 430 - 711q - 467q2 - 13q3 + 435q4 + 646q5 + 281q6 - 127q7 - 426q8 - 377q9 - 177q10 + 120q11 + 352q12 + 228q13 + 67q14 - 122q15 - 159q16 - 151q17 - 45q18 + 92q19 + 77q20 + 71q21 + 11q22 - 5q23 - 49q24 - 41q25 - q26 - 9q27 + 17q28 + 10q29 + 23q30 + q31 - 6q32 - 3q33 - 14q34 - 2q35 - 3q36 + 9q37 + 4q38 + 2q39 + q40 - 4q41 - q42 - 2q43 + q44 + q45 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 141]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[14, 6, 15, 5], X[16, 8, 17, 7], > X[6, 16, 7, 15], X[17, 20, 18, 1], X[11, 18, 12, 19], X[19, 12, 20, 13], > X[8, 14, 9, 13], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 141]] |
Out[3]= | GaussCode[-1, 10, -2, 1, 3, -5, 4, -9, -10, 2, -7, 8, 9, -3, 5, -4, -6, 7, -8, > 6] |
In[4]:= | DTCode[Knot[10, 141]] |
Out[4]= | DTCode[4, 10, -14, -16, 2, 18, -8, -6, 20, 12] |
In[5]:= | br = BR[Knot[10, 141]] |
Out[5]= | BR[3, {1, 1, 1, 1, -2, -1, -1, -1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 141]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 141]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 141]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 141]][t] |
Out[10]= | -3 3 4 2 3 5 - t + -- - - - 4 t + 3 t - t 2 t t |
In[11]:= | Conway[Knot[10, 141]][z] |
Out[11]= | 2 4 6 1 - z - 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 5], Knot[10, 141]} |
In[13]:= | {KnotDet[Knot[10, 141]], KnotSignature[Knot[10, 141]]} |
Out[13]= | {21, 0} |
In[14]:= | Jones[Knot[10, 141]][q] |
Out[14]= | -6 2 2 3 4 3 2 3 + q - -- + -- - -- + -- - - - 2 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 141]} |
In[16]:= | A2Invariant[Knot[10, 141]][q] |
Out[16]= | -18 -12 -10 -8 -4 2 6 q - q - q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[10, 141]][a, z] |
Out[17]= | 2 4 2 2 2 4 2 4 2 4 4 4 2 6 2 - 2 a + a + 3 z - 7 a z + 3 a z + z - 5 a z + a z - a z |
In[18]:= | Kauffman[Knot[10, 141]][a, z] |
Out[18]= | 2 2 4 z 3 5 2 z 2 2 4 2 2 + 2 a + a - - - 3 a z - 4 a z - 2 a z - 4 z + -- - 9 a z - a z + a 2 a 3 6 2 2 z 3 3 3 5 3 4 2 4 4 4 > 3 a z + ---- + 5 a z + 13 a z + 10 a z + 3 z + 8 a z + a z - a 6 4 5 3 5 5 5 2 6 4 6 6 6 7 > 4 a z - 3 a z - 12 a z - 9 a z - 4 a z - 3 a z + a z + a z + 3 7 5 7 2 8 4 8 > 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 141]], Vassiliev[3][Knot[10, 141]]} |
Out[19]= | {-1, 1} |
In[20]:= | Kh[Knot[10, 141]][q, t] |
Out[20]= | 2 1 1 1 1 1 2 1 2 - + 2 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 5 2 q t q t q t q t q t q t q t q t 2 1 2 3 5 2 > ----- + ---- + --- + q t + q t + q t 3 2 3 q t q t q t |
In[21]:= | ColouredJones[Knot[10, 141], 2][q] |
Out[21]= | -18 2 -16 5 3 4 8 -11 8 7 -8 9 1 + q - --- - q + --- - --- - --- + --- - q - --- + -- + q - -- + 17 15 14 13 12 10 9 7 q q q q q q q q 6 4 8 3 6 6 2 3 5 6 > -- + -- - -- + -- + -- - - + 3 q - 3 q + q - q + q 6 5 4 3 2 q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10141 |
|