© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10140Visit 10140's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10140's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X11,19,12,18 X14,5,15,6 X6,17,7,18 X16,7,17,8 X8,15,9,16 X13,1,14,20 X19,13,20,12 X9,2,10,3 |
Gauss Code: | {-1, 10, -2, 1, 4, -5, 6, -7, -10, 2, -3, 9, -8, -4, 7, -6, 5, 3, -9, 8} |
DT (Dowker-Thistlethwaite) Code: | 4 10 -14 -16 2 18 20 -8 -6 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-2 - 2t-1 + 3 - 2t + t2 |
Conway Polynomial: | 1 + 2z2 + z4 |
Other knots with the same Alexander/Conway Polynomial: | {820, K11n73, K11n74, ...} |
Determinant and Signature: | {9, 0} |
Jones Polynomial: | - q-7 + q-6 - q-5 + 2q-4 - q-3 + q-2 - q-1 + 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-22 - q-20 - q-18 + 2q-14 + 2q-12 + 2q-10 - q-6 - q-4 + 1 + q2 |
HOMFLY-PT Polynomial: | 1 - 2a2 - a2z2 + 4a4 + 4a4z2 + a4z4 - 2a6 - a6z2 |
Kauffman Polynomial: | 1 + 2a2 - 4a2z2 + a2z4 - 2a3z + 6a3z3 - 5a3z5 + a3z7 + 4a4 - 12a4z2 + 12a4z4 - 6a4z6 + a4z8 - 6a5z + 16a5z3 - 11a5z5 + 2a5z7 + 2a6 - 8a6z2 + 11a6z4 - 6a6z6 + a6z8 - 4a7z + 10a7z3 - 6a7z5 + a7z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10140. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-21 - q-20 - q-19 + 2q-18 - q-17 - 2q-16 + 2q-15 - q-13 + 2q-12 - q-11 + q-9 - 2q-8 + q-7 - 2q-5 + 3q-4 - 2q-2 + 2q-1 + 1 - q |
3 | - q-42 + q-41 + q-40 - 2q-38 + 2q-36 + q-35 - 2q-34 - q-33 + q-32 - q-30 + 2q-28 - q-27 - 2q-26 + q-25 + 4q-24 - q-23 - 4q-22 + 5q-20 - 5q-18 - 2q-17 + 5q-16 + 2q-15 - 5q-14 - 3q-13 + 6q-12 + 3q-11 - 5q-10 - 4q-9 + 6q-8 + 4q-7 - 5q-6 - 5q-5 + 5q-4 + 4q-3 - 2q-2 - 4q-1 + 2 + 2q - q3 |
4 | q-70 - q-69 - q-68 + 3q-65 - q-64 - q-63 - q-62 - 2q-61 + 4q-60 - 2q-56 + 3q-55 - 2q-54 - q-53 + 4q-50 - q-49 - 3q-48 - 3q-47 + 5q-45 + 3q-44 - 2q-43 - 3q-42 - 3q-41 + 2q-40 + 5q-39 - 4q-36 - 2q-35 + 3q-34 + 4q-32 - 2q-31 - 5q-30 - q-28 + 7q-27 + q-26 - 5q-25 - 2q-24 - 3q-23 + 9q-22 + 3q-21 - 5q-20 - 4q-19 - 4q-18 + 11q-17 + 3q-16 - 7q-15 - 6q-14 - 3q-13 + 14q-12 + 4q-11 - 8q-10 - 7q-9 - 4q-8 + 12q-7 + 6q-6 - 4q-5 - 6q-4 - 5q-3 + 7q-2 + 4q-1 - 2q - 2q2 + q3 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 140]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 19, 12, 18], X[14, 5, 15, 6], > X[6, 17, 7, 18], X[16, 7, 17, 8], X[8, 15, 9, 16], X[13, 1, 14, 20], > X[19, 13, 20, 12], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 140]] |
Out[3]= | GaussCode[-1, 10, -2, 1, 4, -5, 6, -7, -10, 2, -3, 9, -8, -4, 7, -6, 5, 3, -9, > 8] |
In[4]:= | DTCode[Knot[10, 140]] |
Out[4]= | DTCode[4, 10, -14, -16, 2, 18, 20, -8, -6, 12] |
In[5]:= | br = BR[Knot[10, 140]] |
Out[5]= | BR[4, {1, 1, 1, -2, -1, -1, -1, -2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 140]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 140]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 140]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 140]][t] |
Out[10]= | -2 2 2 3 + t - - - 2 t + t t |
In[11]:= | Conway[Knot[10, 140]][z] |
Out[11]= | 2 4 1 + 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 20], Knot[10, 140], Knot[11, NonAlternating, 73], > Knot[11, NonAlternating, 74]} |
In[13]:= | {KnotDet[Knot[10, 140]], KnotSignature[Knot[10, 140]]} |
Out[13]= | {9, 0} |
In[14]:= | Jones[Knot[10, 140]][q] |
Out[14]= | -7 -6 -5 2 -3 -2 1 1 - q + q - q + -- - q + q - - 4 q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 140]} |
In[16]:= | A2Invariant[Knot[10, 140]][q] |
Out[16]= | -22 -20 -18 2 2 2 -6 -4 2 1 - q - q - q + --- + --- + --- - q - q + q 14 12 10 q q q |
In[17]:= | HOMFLYPT[Knot[10, 140]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 4 4 1 - 2 a + 4 a - 2 a - a z + 4 a z - a z + a z |
In[18]:= | Kauffman[Knot[10, 140]][a, z] |
Out[18]= | 2 4 6 3 5 7 2 2 4 2 1 + 2 a + 4 a + 2 a - 2 a z - 6 a z - 4 a z - 4 a z - 12 a z - 6 2 3 3 5 3 7 3 2 4 4 4 6 4 > 8 a z + 6 a z + 16 a z + 10 a z + a z + 12 a z + 11 a z - 3 5 5 5 7 5 4 6 6 6 3 7 5 7 > 5 a z - 11 a z - 6 a z - 6 a z - 6 a z + a z + 2 a z + 7 7 4 8 6 8 > a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 140]], Vassiliev[3][Knot[10, 140]]} |
Out[19]= | {2, -4} |
In[20]:= | Kh[Knot[10, 140]][q, t] |
Out[20]= | 1 1 1 1 1 1 1 1 1 - + q + ------ + ------ + ------ + ----- + ----- + ----- + ----- + --- q 15 7 11 6 11 5 9 4 7 4 5 3 5 2 q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 140], 2][q] |
Out[21]= | -21 -20 -19 2 -17 2 2 -13 2 -11 -9 1 + q - q - q + --- - q - --- + --- - q + --- - q + q - 18 16 15 12 q q q q 2 -7 2 3 2 2 > -- + q - -- + -- - -- + - - q 8 5 4 2 q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10140 |
|