© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1014Visit 1014's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1014's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,16,8,17 X13,20,14,1 X19,14,20,15 X9,18,10,19 X15,6,16,7 X17,8,18,9 |
Gauss Code: | {-1, 4, -3, 1, -2, 9, -5, 10, -8, 3, -4, 2, -6, 7, -9, 5, -10, 8, -7, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 10 12 16 18 2 20 6 8 14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 8t-2 - 12t-1 + 13 - 12t + 8t2 - 2t3 |
Conway Polynomial: | 1 + 2z2 - 4z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11a161, K11n2, ...} |
Determinant and Signature: | {57, -4} |
Jones Polynomial: | q-10 - 3q-9 + 5q-8 - 8q-7 + 9q-6 - 9q-5 + 9q-4 - 6q-3 + 4q-2 - 2q-1 + 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-30 - q-28 - 2q-22 + q-20 - 2q-18 + q-16 + q-14 + 3q-10 - q-8 + q-6 + 1 |
HOMFLY-PT Polynomial: | a2 + 3a2z2 + a2z4 + a4 - a4z2 - 3a4z4 - a4z6 - a6 - 2a6z2 - 3a6z4 - a6z6 + 2a8z2 + a8z4 |
Kauffman Polynomial: | - a2 + 4a2z2 - 4a2z4 + a2z6 - a3z + 6a3z3 - 7a3z5 + 2a3z7 + a4 - a4z2 + 2a4z4 - 5a4z6 + 2a4z8 - 4a5z + 10a5z3 - 9a5z5 + a5z7 + a5z9 + a6 - 9a6z2 + 16a6z4 - 14a6z6 + 5a6z8 - 2a7z + 8a7z3 - 9a7z5 + 3a7z7 + a7z9 - 3a8z2 + 5a8z4 - 4a8z6 + 3a8z8 + 2a9z - 4a9z5 + 4a9z7 - 4a10z4 + 4a10z6 + a11z - 4a11z3 + 3a11z5 - a12z2 + a12z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 1014. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-28 - 3q-27 + q-26 + 7q-25 - 13q-24 + 4q-23 + 21q-22 - 33q-21 + 5q-20 + 44q-19 - 55q-18 + q-17 + 64q-16 - 65q-15 - 7q-14 + 71q-13 - 56q-12 - 16q-11 + 62q-10 - 36q-9 - 20q-8 + 41q-7 - 15q-6 - 16q-5 + 20q-4 - 3q-3 - 8q-2 + 6q-1 - 2q + q2 |
3 | q-54 - 3q-53 + q-52 + 3q-51 + 2q-50 - 8q-49 - 2q-48 + 14q-47 - 21q-45 + 37q-43 - 5q-42 - 57q-41 + 3q-40 + 92q-39 - 6q-38 - 122q-37 - 9q-36 + 168q-35 + 18q-34 - 197q-33 - 43q-32 + 227q-31 + 64q-30 - 240q-29 - 87q-28 + 237q-27 + 113q-26 - 231q-25 - 126q-24 + 201q-23 + 148q-22 - 178q-21 - 149q-20 + 132q-19 + 163q-18 - 103q-17 - 149q-16 + 56q-15 + 142q-14 - 27q-13 - 116q-12 - 3q-11 + 94q-10 + 16q-9 - 63q-8 - 26q-7 + 43q-6 + 21q-5 - 21q-4 - 19q-3 + 13q-2 + 10q-1 - 4 - 7q + 3q2 + 2q3 - 2q5 + q6 |
4 | q-88 - 3q-87 + q-86 + 3q-85 - 2q-84 + 7q-83 - 14q-82 + 2q-81 + 8q-80 - 9q-79 + 28q-78 - 34q-77 + 8q-76 + 14q-75 - 40q-74 + 57q-73 - 53q-72 + 48q-71 + 38q-70 - 116q-69 + 48q-68 - 100q-67 + 160q-66 + 149q-65 - 213q-64 - 57q-63 - 247q-62 + 323q-61 + 398q-60 - 239q-59 - 226q-58 - 545q-57 + 427q-56 + 730q-55 - 127q-54 - 345q-53 - 908q-52 + 395q-51 + 984q-50 + 70q-49 - 325q-48 - 1178q-47 + 254q-46 + 1055q-45 + 245q-44 - 188q-43 - 1272q-42 + 82q-41 + 951q-40 + 356q-39 + 9q-38 - 1210q-37 - 92q-36 + 730q-35 + 412q-34 + 230q-33 - 1020q-32 - 259q-31 + 424q-30 + 404q-29 + 442q-28 - 723q-27 - 360q-26 + 96q-25 + 292q-24 + 554q-23 - 369q-22 - 319q-21 - 148q-20 + 98q-19 + 501q-18 - 82q-17 - 165q-16 - 217q-15 - 66q-14 + 319q-13 + 45q-12 - 15q-11 - 146q-10 - 115q-9 + 139q-8 + 42q-7 + 42q-6 - 54q-5 - 77q-4 + 43q-3 + 10q-2 + 30q-1 - 10 - 31q + 13q2 - 2q3 + 10q4 - 9q6 + 4q7 - q8 + 2q9 - 2q11 + q12 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 14]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], > X[7, 16, 8, 17], X[13, 20, 14, 1], X[19, 14, 20, 15], X[9, 18, 10, 19], > X[15, 6, 16, 7], X[17, 8, 18, 9]] |
In[3]:= | GaussCode[Knot[10, 14]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 9, -5, 10, -8, 3, -4, 2, -6, 7, -9, 5, -10, 8, -7, > 6] |
In[4]:= | DTCode[Knot[10, 14]] |
Out[4]= | DTCode[4, 10, 12, 16, 18, 2, 20, 6, 8, 14] |
In[5]:= | br = BR[Knot[10, 14]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -1, -2, 1, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 14]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 14]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 14]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 14]][t] |
Out[10]= | 2 8 12 2 3 13 - -- + -- - -- - 12 t + 8 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 14]][z] |
Out[11]= | 2 4 6 1 + 2 z - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 14], Knot[11, Alternating, 161], Knot[11, NonAlternating, 2]} |
In[13]:= | {KnotDet[Knot[10, 14]], KnotSignature[Knot[10, 14]]} |
Out[13]= | {57, -4} |
In[14]:= | Jones[Knot[10, 14]][q] |
Out[14]= | -10 3 5 8 9 9 9 6 4 2 1 + q - -- + -- - -- + -- - -- + -- - -- + -- - - 9 8 7 6 5 4 3 2 q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 14]} |
In[16]:= | A2Invariant[Knot[10, 14]][q] |
Out[16]= | -30 -28 2 -20 2 -16 -14 3 -8 -6 1 + q - q - --- + q - --- + q + q + --- - q + q 22 18 10 q q q |
In[17]:= | HOMFLYPT[Knot[10, 14]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 8 2 2 4 4 4 a + a - a + 3 a z - a z - 2 a z + 2 a z + a z - 3 a z - 6 4 8 4 4 6 6 6 > 3 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 14]][a, z] |
Out[18]= | 2 4 6 3 5 7 9 11 2 2 4 2 -a + a + a - a z - 4 a z - 2 a z + 2 a z + a z + 4 a z - a z - 6 2 8 2 12 2 3 3 5 3 7 3 11 3 > 9 a z - 3 a z - a z + 6 a z + 10 a z + 8 a z - 4 a z - 2 4 4 4 6 4 8 4 10 4 12 4 3 5 > 4 a z + 2 a z + 16 a z + 5 a z - 4 a z + a z - 7 a z - 5 5 7 5 9 5 11 5 2 6 4 6 6 6 > 9 a z - 9 a z - 4 a z + 3 a z + a z - 5 a z - 14 a z - 8 6 10 6 3 7 5 7 7 7 9 7 4 8 > 4 a z + 4 a z + 2 a z + a z + 3 a z + 4 a z + 2 a z + 6 8 8 8 5 9 7 9 > 5 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 14]], Vassiliev[3][Knot[10, 14]]} |
Out[19]= | {2, -3} |
In[20]:= | Kh[Knot[10, 14]][q, t] |
Out[20]= | 2 3 1 2 1 3 2 5 3 -- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 5 3 21 8 19 7 17 7 17 6 15 6 15 5 13 5 q q q t q t q t q t q t q t q t 4 5 5 4 4 5 2 4 t t > ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + -- + - + 13 4 11 4 11 3 9 3 9 2 7 2 7 5 3 q q t q t q t q t q t q t q t q t q 2 > q t |
In[21]:= | ColouredJones[Knot[10, 14], 2][q] |
Out[21]= | -28 3 -26 7 13 4 21 33 5 44 55 -17 q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + q + 27 25 24 23 22 21 20 19 18 q q q q q q q q q 64 65 7 71 56 16 62 36 20 41 15 16 20 > --- - --- - --- + --- - --- - --- + --- - -- - -- + -- - -- - -- + -- - 16 15 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q q q 3 8 6 2 > -- - -- + - - 2 q + q 3 2 q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1014 |
|