© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1015Visit 1015's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1015's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,12,4,13 X9,14,10,15 X13,10,14,11 X15,1,16,20 X5,17,6,16 X7,19,8,18 X17,7,18,6 X19,9,20,8 X11,2,12,3 |
Gauss Code: | {-1, 10, -2, 1, -6, 8, -7, 9, -3, 4, -10, 2, -4, 3, -5, 6, -8, 7, -9, 5} |
DT (Dowker-Thistlethwaite) Code: | 4 12 16 18 14 2 10 20 6 8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 6t-2 + 9t-1 - 9 + 9t - 6t2 + 2t3 |
Conway Polynomial: | 1 + 3z2 + 6z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {43, 2} |
Jones Polynomial: | - q-4 + 2q-3 - 3q-2 + 5q-1 - 6 + 7q - 6q2 + 6q3 - 4q4 + 2q5 - q6 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-12 + q-4 - q-2 + 1 + q2 + q4 + 3q6 + q10 - q12 - q14 - q18 |
HOMFLY-PT Polynomial: | - 2a-4 - 3a-4z2 - a-4z4 + 3a-2 + 5a-2z2 + 4a-2z4 + a-2z6 + 1 + 4z2 + 4z4 + z6 - a2 - 3a2z2 - a2z4 |
Kauffman Polynomial: | - a-7z + a-7z3 - a-6z2 + 2a-6z4 + a-5z - 2a-5z3 + 3a-5z5 - 2a-4 + 7a-4z2 - 7a-4z4 + 4a-4z6 + 3a-3z - 3a-3z3 - 3a-3z5 + 3a-3z7 - 3a-2 + 8a-2z2 - 8a-2z4 - a-2z6 + 2a-2z8 + a-1z3 - 5a-1z5 + a-1z9 + 1 - 7z2 + 16z4 - 15z6 + 4z8 - 3az + 8az3 - 4az5 - 2az7 + az9 + a2 - 7a2z2 + 15a2z4 - 10a2z6 + 2a2z8 - 2a3z + 7a3z3 - 5a3z5 + a3z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1015. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-13 - 2q-12 - q-11 + 6q-10 - 4q-9 - 7q-8 + 13q-7 - 2q-6 - 17q-5 + 19q-4 + 3q-3 - 26q-2 + 22q-1 + 10 - 32q + 19q2 + 16q3 - 32q4 + 13q5 + 17q6 - 26q7 + 10q8 + 11q9 - 17q10 + 7q11 + 5q12 - 8q13 + 3q14 + q15 - 2q16 + q17 |
3 | - q-27 + 2q-26 + q-25 - 2q-24 - 5q-23 + 3q-22 + 9q-21 - 15q-19 - 4q-18 + 17q-17 + 14q-16 - 19q-15 - 23q-14 + 16q-13 + 31q-12 - 9q-11 - 39q-10 + 2q-9 + 40q-8 + 8q-7 - 42q-6 - 12q-5 + 37q-4 + 22q-3 - 36q-2 - 23q-1 + 26 + 33q - 24q2 - 31q3 + 9q4 + 40q5 - 5q6 - 34q7 - 9q8 + 37q9 + 7q10 - 24q11 - 15q12 + 24q13 + 5q14 - 12q15 - 4q16 + 11q17 - 3q18 - 8q19 + 7q20 + 5q21 - 6q22 - 6q23 + 7q24 + 2q25 - 3q26 - 3q27 + 4q28 - q29 - q31 + 2q32 - q33 |
4 | q-46 - 2q-45 - q-44 + 2q-43 + q-42 + 6q-41 - 7q-40 - 7q-39 + 25q-36 - 4q-35 - 15q-34 - 13q-33 - 20q-32 + 45q-31 + 15q-30 + q-29 - 20q-28 - 66q-27 + 39q-26 + 26q-25 + 41q-24 + 8q-23 - 102q-22 + 9q-21 - 5q-20 + 69q-19 + 63q-18 - 100q-17 - 3q-16 - 62q-15 + 54q-14 + 102q-13 - 71q-12 + 30q-11 - 104q-10 + 9q-9 + 99q-8 - 52q-7 + 92q-6 - 108q-5 - 35q-4 + 66q-3 - 52q-2 + 152q-1 - 88 - 67q + 24q2 - 56q3 + 205q4 - 62q5 - 100q6 - 25q7 - 54q8 + 253q9 - 26q10 - 123q11 - 81q12 - 69q13 + 280q14 + 27q15 - 110q16 - 117q17 - 104q18 + 250q19 + 62q20 - 57q21 - 97q22 - 129q23 + 170q24 + 54q25 - 5q26 - 42q27 - 113q28 + 89q29 + 18q30 + 16q31 + 3q32 - 71q33 + 40q34 - 9q35 + 12q36 + 18q37 - 34q38 + 19q39 - 14q40 + 4q41 + 13q42 - 15q43 + 11q44 - 7q45 + 5q47 - 6q48 + 5q49 - 2q50 + q52 - 2q53 + q54 |
5 | - q-70 + 2q-69 + q-68 - 2q-67 - q-66 - 2q-65 - 2q-64 + 5q-63 + 9q-62 - 5q-60 - 9q-59 - 14q-58 + 20q-56 + 22q-55 + 8q-54 - 10q-53 - 34q-52 - 34q-51 + 2q-50 + 34q-49 + 50q-48 + 31q-47 - 19q-46 - 63q-45 - 63q-44 - 16q-43 + 52q-42 + 92q-41 + 60q-40 - 19q-39 - 91q-38 - 107q-37 - 36q-36 + 70q-35 + 131q-34 + 88q-33 - 16q-32 - 118q-31 - 138q-30 - 46q-29 + 84q-28 + 144q-27 + 98q-26 - 13q-25 - 118q-24 - 139q-23 - 48q-22 + 62q-21 + 123q-20 + 109q-19 + 24q-18 - 88q-17 - 137q-16 - 101q-15 - q-14 + 137q-13 + 183q-12 + 88q-11 - 91q-10 - 235q-9 - 207q-8 + 38q-7 + 271q-6 + 291q-5 + 57q-4 - 276q-3 - 403q-2 - 122q-1 + 279 + 451q + 221q2 - 263q3 - 545q4 - 267q5 + 266q6 + 574q7 + 352q8 - 258q9 - 668q10 - 395q11 + 273q12 + 707q13 + 485q14 - 259q15 - 805q16 - 547q17 + 247q18 + 827q19 + 651q20 - 183q21 - 880q22 - 703q23 + 116q24 + 812q25 + 776q26 - 5q27 - 770q28 - 761q29 - 73q30 + 620q31 + 729q32 + 167q33 - 509q34 - 637q35 - 195q36 + 357q37 + 529q38 + 210q39 - 244q40 - 408q41 - 191q42 + 149q43 + 296q44 + 154q45 - 79q46 - 196q47 - 123q48 + 40q49 + 119q50 + 82q51 - 3q52 - 72q53 - 55q54 - q55 + 29q56 + 31q57 + 18q58 - 20q59 - 19q60 - 2q61 - q62 + 5q63 + 14q64 - 4q65 - 6q66 + 4q67 - 5q68 - 3q69 + 7q70 - q71 - 2q72 + 4q73 - 3q74 - 2q75 + 2q76 - q78 + 2q79 - q80 |
6 | q-99 - 2q-98 - q-97 + 2q-96 + q-95 + 2q-94 - 2q-93 + 4q-92 - 7q-91 - 9q-90 + 3q-89 + 4q-88 + 11q-87 + q-86 + 19q-85 - 12q-84 - 27q-83 - 14q-82 - 10q-81 + 15q-80 + 4q-79 + 67q-78 + 17q-77 - 22q-76 - 33q-75 - 53q-74 - 31q-73 - 52q-72 + 97q-71 + 74q-70 + 59q-69 + 25q-68 - 34q-67 - 82q-66 - 197q-65 + 9q-64 + 24q-63 + 118q-62 + 149q-61 + 138q-60 + 28q-59 - 260q-58 - 125q-57 - 188q-56 - 24q-55 + 113q-54 + 307q-53 + 283q-52 - 78q-51 - 40q-50 - 320q-49 - 264q-48 - 185q-47 + 196q-46 + 368q-45 + 143q-44 + 281q-43 - 117q-42 - 242q-41 - 439q-40 - 113q-39 + 90q-38 + 25q-37 + 449q-36 + 233q-35 + 154q-34 - 282q-33 - 182q-32 - 264q-31 - 461q-30 + 142q-29 + 271q-28 + 566q-27 + 229q-26 + 248q-25 - 239q-24 - 914q-23 - 510q-22 - 198q-21 + 577q-20 + 681q-19 + 990q-18 + 291q-17 - 958q-16 - 1097q-15 - 961q-14 + 109q-13 + 752q-12 + 1656q-11 + 1099q-10 - 554q-9 - 1344q-8 - 1664q-7 - 612q-6 + 432q-5 + 2008q-4 + 1862q-3 + 88q-2 - 1250q-1 - 2107 - 1302q - 72q2 + 2064q3 + 2401q4 + 700q5 - 1011q6 - 2319q7 - 1810q8 - 507q9 + 2026q10 + 2758q11 + 1144q12 - 861q13 - 2500q14 - 2197q15 - 769q16 + 2098q17 + 3127q18 + 1513q19 - 828q20 - 2797q21 - 2653q22 - 1025q23 + 2210q24 + 3576q25 + 2009q26 - 649q27 - 3019q28 - 3173q29 - 1504q30 + 2013q31 + 3809q32 + 2563q33 - 105q34 - 2770q35 - 3380q36 - 2062q37 + 1334q38 + 3437q39 + 2759q40 + 569q41 - 1979q42 - 2949q43 - 2251q44 + 522q45 + 2515q46 + 2342q47 + 904q48 - 1078q49 - 2047q50 - 1889q51 + 33q52 + 1522q53 + 1552q54 + 785q55 - 478q56 - 1151q57 - 1249q58 - 81q59 + 811q60 + 821q61 + 478q62 - 194q63 - 540q64 - 694q65 - 46q66 + 396q67 + 355q68 + 238q69 - 69q70 - 207q71 - 350q72 - 17q73 + 173q74 + 119q75 + 112q76 - 10q77 - 55q78 - 166q79 - 8q80 + 66q81 + 20q82 + 52q83 + 8q84 - 3q85 - 72q86 - 2q87 + 24q88 - 10q89 + 23q90 + 6q91 + 7q92 - 28q93 + q94 + 9q95 - 12q96 + 11q97 + q98 + 5q99 - 9q100 + q101 + 3q102 - 7q103 + 5q104 + 2q106 - 2q107 + q109 - 2q110 + q111 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 15]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[9, 14, 10, 15], X[13, 10, 14, 11], > X[15, 1, 16, 20], X[5, 17, 6, 16], X[7, 19, 8, 18], X[17, 7, 18, 6], > X[19, 9, 20, 8], X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[10, 15]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -6, 8, -7, 9, -3, 4, -10, 2, -4, 3, -5, 6, -8, 7, -9, > 5] |
In[4]:= | DTCode[Knot[10, 15]] |
Out[4]= | DTCode[4, 12, 16, 18, 14, 2, 10, 20, 6, 8] |
In[5]:= | br = BR[Knot[10, 15]] |
Out[5]= | BR[4, {1, 1, 1, 1, -2, 1, -2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 15]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 15]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 15]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 15]][t] |
Out[10]= | 2 6 9 2 3 -9 + -- - -- + - + 9 t - 6 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 15]][z] |
Out[11]= | 2 4 6 1 + 3 z + 6 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 15]} |
In[13]:= | {KnotDet[Knot[10, 15]], KnotSignature[Knot[10, 15]]} |
Out[13]= | {43, 2} |
In[14]:= | Jones[Knot[10, 15]][q] |
Out[14]= | -4 2 3 5 2 3 4 5 6 -6 - q + -- - -- + - + 7 q - 6 q + 6 q - 4 q + 2 q - q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 15]} |
In[16]:= | A2Invariant[Knot[10, 15]][q] |
Out[16]= | -12 -4 -2 2 4 6 10 12 14 18 1 - q + q - q + q + q + 3 q + q - q - q - q |
In[17]:= | HOMFLYPT[Knot[10, 15]][a, z] |
Out[17]= | 2 2 4 4 2 3 2 2 3 z 5 z 2 2 4 z 4 z 2 4 1 - -- + -- - a + 4 z - ---- + ---- - 3 a z + 4 z - -- + ---- - a z + 4 2 4 2 4 2 a a a a a a 6 6 z > z + -- 2 a |
In[18]:= | Kauffman[Knot[10, 15]][a, z] |
Out[18]= | 2 2 2 2 3 2 z z 3 z 3 2 z 7 z 8 z 1 - -- - -- + a - -- + -- + --- - 3 a z - 2 a z - 7 z - -- + ---- + ---- - 4 2 7 5 3 6 4 2 a a a a a a a a 3 3 3 3 4 4 2 2 z 2 z 3 z z 3 3 3 4 2 z 7 z > 7 a z + -- - ---- - ---- + -- + 8 a z + 7 a z + 16 z + ---- - ---- - 7 5 3 a 6 4 a a a a a 4 5 5 5 6 8 z 2 4 3 z 3 z 5 z 5 3 5 6 4 z > ---- + 15 a z + ---- - ---- - ---- - 4 a z - 5 a z - 15 z + ---- - 2 5 3 a 4 a a a a 6 7 8 9 z 2 6 3 z 7 3 7 8 2 z 2 8 z 9 > -- - 10 a z + ---- - 2 a z + a z + 4 z + ---- + 2 a z + -- + a z 2 3 2 a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 15]], Vassiliev[3][Knot[10, 15]]} |
Out[19]= | {3, 2} |
In[20]:= | Kh[Knot[10, 15]][q, t] |
Out[20]= | 3 1 1 1 2 1 3 2 3 3 q 4 q + 4 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 9 5 7 4 5 4 5 3 3 3 3 2 2 q t t q t q t q t q t q t q t q t 3 5 5 2 7 2 7 3 9 3 9 4 11 4 > 3 q t + 3 q t + 3 q t + 3 q t + q t + 3 q t + q t + q t + 13 5 > q t |
In[21]:= | ColouredJones[Knot[10, 15], 2][q] |
Out[21]= | -13 2 -11 6 4 7 13 2 17 19 3 26 22 10 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + -- - 12 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 2 3 4 5 6 7 8 9 > 32 q + 19 q + 16 q - 32 q + 13 q + 17 q - 26 q + 10 q + 11 q - 10 11 12 13 14 15 16 17 > 17 q + 7 q + 5 q - 8 q + 3 q + q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1015 |
|