© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1013Visit 1013's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1013's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,18,6,19 X13,1,14,20 X19,15,20,14 X7,16,8,17 X15,8,16,9 X17,6,18,7 |
Gauss Code: | {-1, 4, -3, 1, -5, 10, -8, 9, -2, 3, -4, 2, -6, 7, -9, 8, -10, 5, -7, 6} |
DT (Dowker-Thistlethwaite) Code: | 4 10 18 16 12 2 20 8 6 14 |
Minimum Braid Representative:
Length is 11, width is 6 Braid index is 6 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-2 - 13t-1 + 23 - 13t + 2t2 |
Conway Polynomial: | 1 - 5z2 + 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {53, 0} |
Jones Polynomial: | q-6 - 2q-5 + 4q-4 - 6q-3 + 8q-2 - 9q-1 + 8 - 7q + 5q2 - 2q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-20 + q-18 - q-16 + q-14 - 2q-10 + 2q-8 - 2 + q2 - 2q4 + q6 + 2q8 - q10 + q12 + q14 |
HOMFLY-PT Polynomial: | a-4 - 2a-2z2 - 1 - z2 + z4 + a2 + a2z4 - a4 - 2a4z2 + a6 |
Kauffman Polynomial: | a-4 - 2a-4z2 + a-4z4 - 2a-3z3 + 2a-3z5 + a-2z2 - 3a-2z4 + 3a-2z6 - 2a-1z + 3a-1z3 - 3a-1z5 + 3a-1z7 - 1 + 4z2 - 3z4 + 2z8 - 2az5 + az7 + az9 - a2 - a2z2 + 6a2z4 - 9a2z6 + 4a2z8 + a3z + a3z3 - 4a3z5 + a3z9 - a4 + 2a4z2 + a4z4 - 5a4z6 + 2a4z8 - a5z + 6a5z3 - 7a5z5 + 2a5z7 - a6 + 4a6z2 - 4a6z4 + a6z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-5, 2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1013. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-18 - 2q-17 + 6q-15 - 8q-14 - 4q-13 + 20q-12 - 14q-11 - 17q-10 + 38q-9 - 15q-8 - 36q-7 + 54q-6 - 9q-5 - 53q-4 + 60q-3 - 58q-1 + 52 + 6q - 47q2 + 34q3 + 6q4 - 27q5 + 16q6 + 3q7 - 10q8 + 5q9 + q10 - 2q11 + q12 |
3 | q-36 - 2q-35 + 2q-33 + 3q-32 - 7q-31 - 5q-30 + 10q-29 + 15q-28 - 17q-27 - 25q-26 + 15q-25 + 47q-24 - 14q-23 - 65q-22 - 2q-21 + 87q-20 + 21q-19 - 100q-18 - 50q-17 + 110q-16 + 79q-15 - 108q-14 - 112q-13 + 104q-12 + 139q-11 - 91q-10 - 165q-9 + 75q-8 + 188q-7 - 61q-6 - 197q-5 + 38q-4 + 204q-3 - 23q-2 - 193q-1 + 2 + 178q + 8q2 - 148q3 - 16q4 + 116q5 + 19q6 - 87q7 - 12q8 + 56q9 + 13q10 - 43q11 + 21q13 + 4q14 - 18q15 + 2q16 + 8q17 + q18 - 7q19 + 2q20 + q21 + q22 - 2q23 + q24 |
4 | q-60 - 2q-59 + 2q-57 - q-56 + 4q-55 - 9q-54 - q-53 + 10q-52 + 15q-50 - 31q-49 - 17q-48 + 24q-47 + 15q-46 + 57q-45 - 64q-44 - 68q-43 + 9q-42 + 30q-41 + 165q-40 - 59q-39 - 134q-38 - 74q-37 - 22q-36 + 306q-35 + 30q-34 - 125q-33 - 187q-32 - 196q-31 + 377q-30 + 160q-29 + 18q-28 - 222q-27 - 440q-26 + 310q-25 + 228q-24 + 253q-23 - 127q-22 - 653q-21 + 145q-20 + 189q-19 + 484q-18 + 53q-17 - 781q-16 - 42q-15 + 87q-14 + 664q-13 + 240q-12 - 834q-11 - 206q-10 - 29q-9 + 773q-8 + 401q-7 - 803q-6 - 334q-5 - 156q-4 + 782q-3 + 517q-2 - 665q-1 - 374 - 283q + 644q2 + 541q3 - 434q4 - 286q5 - 351q6 + 399q7 + 435q8 - 214q9 - 114q10 - 303q11 + 170q12 + 251q13 - 92q14 + 21q15 - 179q16 + 50q17 + 96q18 - 56q19 + 61q20 - 73q21 + 17q22 + 25q23 - 42q24 + 40q25 - 23q26 + 13q27 + 7q28 - 25q29 + 16q30 - 7q31 + 6q32 + 3q33 - 9q34 + 5q35 - 2q36 + q37 + q38 - 2q39 + q40 |
5 | q-90 - 2q-89 + 2q-87 - q-86 + 2q-84 - 5q-83 - 2q-82 + 9q-81 + 3q-80 - 3q-79 - q-78 - 17q-77 - 11q-76 + 21q-75 + 32q-74 + 14q-73 - 12q-72 - 57q-71 - 63q-70 + 15q-69 + 90q-68 + 106q-67 + 37q-66 - 110q-65 - 195q-64 - 104q-63 + 93q-62 + 258q-61 + 246q-60 - 23q-59 - 320q-58 - 366q-57 - 128q-56 + 270q-55 + 518q-54 + 328q-53 - 165q-52 - 550q-51 - 542q-50 - 91q-49 + 505q-48 + 722q-47 + 374q-46 - 285q-45 - 788q-44 - 708q-43 - 46q-42 + 710q-41 + 975q-40 + 491q-39 - 475q-38 - 1161q-37 - 948q-36 + 89q-35 + 1197q-34 + 1420q-33 + 382q-32 - 1127q-31 - 1790q-30 - 909q-29 + 921q-28 + 2109q-27 + 1431q-26 - 672q-25 - 2326q-24 - 1902q-23 + 374q-22 + 2471q-21 + 2338q-20 - 85q-19 - 2585q-18 - 2696q-17 - 173q-16 + 2624q-15 + 3017q-14 + 453q-13 - 2679q-12 - 3283q-11 - 682q-10 + 2629q-9 + 3493q-8 + 980q-7 - 2550q-6 - 3642q-5 - 1236q-4 + 2315q-3 + 3683q-2 + 1546q-1 - 2009 - 3585q - 1786q2 + 1559q3 + 3332q4 + 1978q5 - 1073q6 - 2925q7 - 2021q8 + 568q9 + 2388q10 + 1936q11 - 121q12 - 1811q13 - 1719q14 - 177q15 + 1226q16 + 1378q17 + 402q18 - 748q19 - 1059q20 - 409q21 + 369q22 + 676q23 + 426q24 - 128q25 - 450q26 - 291q27 - q28 + 201q29 + 236q30 + 55q31 - 112q32 - 115q33 - 61q34 + 13q35 + 80q36 + 45q37 - 8q38 - 12q39 - 31q40 - 24q41 + 20q42 + 11q43 + 2q44 + 11q45 - 4q46 - 18q47 + 7q48 + 2q49 - 4q50 + 7q51 + q52 - 7q53 + 3q54 + q55 - 2q56 + q57 + q58 - 2q59 + q60 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 13]] |
Out[2]= | PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], > X[5, 18, 6, 19], X[13, 1, 14, 20], X[19, 15, 20, 14], X[7, 16, 8, 17], > X[15, 8, 16, 9], X[17, 6, 18, 7]] |
In[3]:= | GaussCode[Knot[10, 13]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -5, 10, -8, 9, -2, 3, -4, 2, -6, 7, -9, 8, -10, 5, -7, > 6] |
In[4]:= | DTCode[Knot[10, 13]] |
Out[4]= | DTCode[4, 10, 18, 16, 12, 2, 20, 8, 6, 14] |
In[5]:= | br = BR[Knot[10, 13]] |
Out[5]= | BR[6, {-1, -1, -2, 1, 3, -2, -4, 3, 5, -4, 5}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {6, 11} |
In[7]:= | BraidIndex[Knot[10, 13]] |
Out[7]= | 6 |
In[8]:= | Show[DrawMorseLink[Knot[10, 13]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 13]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 13]][t] |
Out[10]= | 2 13 2 23 + -- - -- - 13 t + 2 t 2 t t |
In[11]:= | Conway[Knot[10, 13]][z] |
Out[11]= | 2 4 1 - 5 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 13]} |
In[13]:= | {KnotDet[Knot[10, 13]], KnotSignature[Knot[10, 13]]} |
Out[13]= | {53, 0} |
In[14]:= | Jones[Knot[10, 13]][q] |
Out[14]= | -6 2 4 6 8 9 2 3 4 8 + q - -- + -- - -- + -- - - - 7 q + 5 q - 2 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 13]} |
In[16]:= | A2Invariant[Knot[10, 13]][q] |
Out[16]= | -20 -18 -16 -14 2 2 2 4 6 8 10 12 -2 + q + q - q + q - --- + -- + q - 2 q + q + 2 q - q + q + 10 8 q q 14 > q |
In[17]:= | HOMFLYPT[Knot[10, 13]][a, z] |
Out[17]= | 2 -4 2 4 6 2 2 z 4 2 4 2 4 -1 + a + a - a + a - z - ---- - 2 a z + z + a z 2 a |
In[18]:= | Kauffman[Knot[10, 13]][a, z] |
Out[18]= | 2 2 -4 2 4 6 2 z 3 5 2 2 z z 2 2 -1 + a - a - a - a - --- + a z - a z + 4 z - ---- + -- - a z + a 4 2 a a 3 3 4 4 4 2 6 2 2 z 3 z 3 3 5 3 4 z 3 z > 2 a z + 4 a z - ---- + ---- + a z + 6 a z - 3 z + -- - ---- + 3 a 4 2 a a a 5 5 2 4 4 4 6 4 2 z 3 z 5 3 5 5 5 > 6 a z + a z - 4 a z + ---- - ---- - 2 a z - 4 a z - 7 a z + 3 a a 6 7 3 z 2 6 4 6 6 6 3 z 7 5 7 8 2 8 > ---- - 9 a z - 5 a z + a z + ---- + a z + 2 a z + 2 z + 4 a z + 2 a a 4 8 9 3 9 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 13]], Vassiliev[3][Knot[10, 13]]} |
Out[19]= | {-5, 2} |
In[20]:= | Kh[Knot[10, 13]][q, t] |
Out[20]= | 4 1 1 1 3 1 3 3 5 - + 5 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 5 2 q t q t q t q t q t q t q t q t 3 4 5 3 3 2 5 2 5 3 7 3 > ----- + ---- + --- + 4 q t + 3 q t + q t + 4 q t + q t + q t + 3 2 3 q t q t q t 9 4 > q t |
In[21]:= | ColouredJones[Knot[10, 13], 2][q] |
Out[21]= | -18 2 6 8 4 20 14 17 38 15 36 54 9 52 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + -- - -- - 17 15 14 13 12 11 10 9 8 7 6 5 q q q q q q q q q q q q 53 60 58 2 3 4 5 6 7 8 > -- + -- - -- + 6 q - 47 q + 34 q + 6 q - 27 q + 16 q + 3 q - 10 q + 4 3 q q q 9 10 11 12 > 5 q + q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1013 |
|