© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10127Visit 10127's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10127's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X6,14,7,13 X7283 |
Gauss Code: | {-1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7, 6, -8, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -14 2 16 18 -6 20 10 12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 4t-2 - 6t-1 + 7 - 6t + 4t2 - t3 |
Conway Polynomial: | 1 + z2 - 2z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {10150, K11n51, ...} |
Determinant and Signature: | {29, -4} |
Jones Polynomial: | q-10 - 2q-9 + 3q-8 - 5q-7 + 5q-6 - 5q-5 + 4q-4 - 2q-3 + 2q-2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-30 + q-26 - 2q-22 - q-20 - 3q-18 + q-12 + 3q-10 + q-8 + 2q-6 |
HOMFLY-PT Polynomial: | 5a4 + 7a4z2 + 2a4z4 - 6a6 - 9a6z2 - 5a6z4 - a6z6 + 2a8 + 3a8z2 + a8z4 |
Kauffman Polynomial: | 5a4 - 9a4z2 + 3a4z4 - 5a5z + 5a5z3 - 3a5z5 + a5z7 + 6a6 - 14a6z2 + 11a6z4 - 4a6z6 + a6z8 - 8a7z + 16a7z3 - 10a7z5 + 3a7z7 + 2a8 - 2a8z2 + 4a8z4 - 2a8z6 + a8z8 - 2a9z + 7a9z3 - 5a9z5 + 2a9z7 + a10z2 - 3a10z4 + 2a10z6 + a11z - 4a11z3 + 2a11z5 - 2a12z2 + a12z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 10127. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-28 - 2q-27 + 4q-25 - 6q-24 + 11q-22 - 12q-21 - 4q-20 + 22q-19 - 17q-18 - 9q-17 + 28q-16 - 17q-15 - 12q-14 + 25q-13 - 11q-12 - 12q-11 + 17q-10 - 4q-9 - 9q-8 + 8q-7 + q-6 - 4q-5 + 2q-4 + q-3 |
3 | q-54 - 2q-53 + q-51 + 2q-50 - 3q-49 - q-48 + 4q-47 + 2q-46 - 8q-45 - 3q-44 + 13q-43 + 7q-42 - 19q-41 - 16q-40 + 27q-39 + 25q-38 - 29q-37 - 42q-36 + 36q-35 + 49q-34 - 31q-33 - 62q-32 + 32q-31 + 65q-30 - 26q-29 - 68q-28 + 22q-27 + 65q-26 - 14q-25 - 61q-24 + 6q-23 + 56q-22 - 45q-20 - 12q-19 + 40q-18 + 12q-17 - 23q-16 - 22q-15 + 19q-14 + 14q-13 - 4q-12 - 16q-11 + 3q-10 + 7q-9 + 4q-8 - 6q-7 + 2q-4 |
4 | q-88 - 2q-87 + q-85 - q-84 + 5q-83 - 5q-82 + q-81 + q-80 - 7q-79 + 11q-78 - 9q-77 + 6q-76 + 8q-75 - 17q-74 + 11q-73 - 24q-72 + 14q-71 + 31q-70 - 14q-69 + 11q-68 - 68q-67 + q-66 + 64q-65 + 25q-64 + 38q-63 - 133q-62 - 54q-61 + 75q-60 + 85q-59 + 109q-58 - 181q-57 - 128q-56 + 51q-55 + 125q-54 + 187q-53 - 189q-52 - 176q-51 + 13q-50 + 131q-49 + 234q-48 - 172q-47 - 187q-46 - 15q-45 + 115q-44 + 242q-43 - 140q-42 - 170q-41 - 41q-40 + 84q-39 + 229q-38 - 89q-37 - 136q-36 - 68q-35 + 35q-34 + 196q-33 - 24q-32 - 80q-31 - 85q-30 - 24q-29 + 138q-28 + 26q-27 - 13q-26 - 69q-25 - 62q-24 + 63q-23 + 34q-22 + 32q-21 - 27q-20 - 57q-19 + 8q-18 + 11q-17 + 33q-16 + 6q-15 - 25q-14 - 8q-13 - 5q-12 + 12q-11 + 9q-10 - 3q-9 - 2q-8 - 4q-7 + 2q-5 + q-4 |
5 | q-130 - 2q-129 + q-127 - q-126 + 2q-125 + 3q-124 - 3q-123 - 3q-122 + q-121 - 4q-120 + q-119 + 9q-118 + 2q-117 - 3q-116 - q-115 - 10q-114 - 9q-113 + 7q-112 + 14q-111 + 13q-110 + 9q-109 - 16q-108 - 33q-107 - 25q-106 + 8q-105 + 47q-104 + 59q-103 + 19q-102 - 54q-101 - 105q-100 - 73q-99 + 42q-98 + 152q-97 + 157q-96 + 6q-95 - 195q-94 - 258q-93 - 93q-92 + 201q-91 + 377q-90 + 218q-89 - 188q-88 - 469q-87 - 353q-86 + 107q-85 + 557q-84 + 502q-83 - 47q-82 - 579q-81 - 611q-80 - 70q-79 + 598q-78 + 709q-77 + 131q-76 - 570q-75 - 750q-74 - 217q-73 + 549q-72 + 779q-71 + 251q-70 - 511q-69 - 775q-68 - 289q-67 + 478q-66 + 767q-65 + 301q-64 - 433q-63 - 741q-62 - 326q-61 + 388q-60 + 707q-59 + 344q-58 - 321q-57 - 660q-56 - 365q-55 + 237q-54 + 594q-53 + 393q-52 - 149q-51 - 509q-50 - 389q-49 + 31q-48 + 399q-47 + 400q-46 + 51q-45 - 284q-44 - 335q-43 - 152q-42 + 146q-41 + 304q-40 + 178q-39 - 43q-38 - 183q-37 - 206q-36 - 64q-35 + 124q-34 + 158q-33 + 102q-32 - 5q-31 - 125q-30 - 125q-29 - 26q-28 + 45q-27 + 97q-26 + 79q-25 - 11q-24 - 70q-23 - 52q-22 - 34q-21 + 23q-20 + 56q-19 + 30q-18 - 8q-17 - 15q-16 - 28q-15 - 14q-14 + 12q-13 + 15q-12 + 4q-11 + 6q-10 - 6q-9 - 6q-8 - 2q-7 + 2q-6 + 2q-4 |
6 | q-180 - 2q-179 + q-177 - q-176 + 2q-175 + 5q-173 - 7q-172 - 3q-171 + 3q-170 - 5q-169 + 3q-168 + 2q-167 + 17q-166 - 11q-165 - 7q-164 + 5q-163 - 15q-162 - 4q-161 + 39q-159 - 7q-158 - 5q-157 + 14q-156 - 33q-155 - 32q-154 - 21q-153 + 67q-152 + 12q-151 + 23q-150 + 55q-149 - 48q-148 - 95q-147 - 104q-146 + 53q-145 + 26q-144 + 110q-143 + 204q-142 + 22q-141 - 157q-140 - 298q-139 - 125q-138 - 107q-137 + 196q-136 + 529q-135 + 358q-134 - 11q-133 - 504q-132 - 544q-131 - 620q-130 + 9q-129 + 867q-128 + 1022q-127 + 604q-126 - 381q-125 - 971q-124 - 1524q-123 - 702q-122 + 834q-121 + 1699q-120 + 1601q-119 + 269q-118 - 1001q-117 - 2399q-116 - 1740q-115 + 297q-114 + 1970q-113 + 2490q-112 + 1161q-111 - 580q-110 - 2826q-109 - 2582q-108 - 411q-107 + 1814q-106 + 2907q-105 + 1822q-104 - 46q-103 - 2827q-102 - 2958q-101 - 905q-100 + 1528q-99 + 2937q-98 + 2095q-97 + 308q-96 - 2667q-95 - 3001q-94 - 1121q-93 + 1314q-92 + 2817q-91 + 2145q-90 + 484q-89 - 2479q-88 - 2915q-87 - 1231q-86 + 1119q-85 + 2629q-84 + 2147q-83 + 659q-82 - 2189q-81 - 2751q-80 - 1381q-79 + 783q-78 + 2292q-77 + 2121q-76 + 952q-75 - 1661q-74 - 2423q-73 - 1564q-72 + 234q-71 + 1696q-70 + 1954q-69 + 1303q-68 - 878q-67 - 1819q-66 - 1602q-65 - 395q-64 + 844q-63 + 1492q-62 + 1470q-61 - 38q-60 - 950q-59 - 1288q-58 - 788q-57 - 28q-56 + 738q-55 + 1213q-54 + 489q-53 - 86q-52 - 629q-51 - 691q-50 - 527q-49 - 9q-48 + 590q-47 + 475q-46 + 368q-45 + 16q-44 - 225q-43 - 470q-42 - 348q-41 + 14q-40 + 117q-39 + 298q-38 + 258q-37 + 165q-36 - 128q-35 - 237q-34 - 168q-33 - 140q-32 + 30q-31 + 133q-30 + 207q-29 + 79q-28 - 20q-27 - 66q-26 - 122q-25 - 83q-24 - 19q-23 + 73q-22 + 62q-21 + 44q-20 + 21q-19 - 22q-18 - 41q-17 - 37q-16 - q-15 + 8q-14 + 13q-13 + 16q-12 + 9q-11 - 3q-10 - 8q-9 - 4q-8 - 2q-7 + 2q-4 + q-3 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 127]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1], > X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], X[19, 12, 20, 13], > X[6, 14, 7, 13], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 127]] |
Out[3]= | GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7, 6, -8, > 4] |
In[4]:= | DTCode[Knot[10, 127]] |
Out[4]= | DTCode[4, 8, -14, 2, 16, 18, -6, 20, 10, 12] |
In[5]:= | br = BR[Knot[10, 127]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 127]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 127]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 127]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 127]][t] |
Out[10]= | -3 4 6 2 3 7 - t + -- - - - 6 t + 4 t - t 2 t t |
In[11]:= | Conway[Knot[10, 127]][z] |
Out[11]= | 2 4 6 1 + z - 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 127], Knot[10, 150], Knot[11, NonAlternating, 51]} |
In[13]:= | {KnotDet[Knot[10, 127]], KnotSignature[Knot[10, 127]]} |
Out[13]= | {29, -4} |
In[14]:= | Jones[Knot[10, 127]][q] |
Out[14]= | -10 2 3 5 5 5 4 2 2 q - -- + -- - -- + -- - -- + -- - -- + -- 9 8 7 6 5 4 3 2 q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 127]} |
In[16]:= | A2Invariant[Knot[10, 127]][q] |
Out[16]= | -30 -26 2 -20 3 -12 3 -8 2 q + q - --- - q - --- + q + --- + q + -- 22 18 10 6 q q q q |
In[17]:= | HOMFLYPT[Knot[10, 127]][a, z] |
Out[17]= | 4 6 8 4 2 6 2 8 2 4 4 6 4 8 4 5 a - 6 a + 2 a + 7 a z - 9 a z + 3 a z + 2 a z - 5 a z + a z - 6 6 > a z |
In[18]:= | Kauffman[Knot[10, 127]][a, z] |
Out[18]= | 4 6 8 5 7 9 11 4 2 6 2 5 a + 6 a + 2 a - 5 a z - 8 a z - 2 a z + a z - 9 a z - 14 a z - 8 2 10 2 12 2 5 3 7 3 9 3 11 3 > 2 a z + a z - 2 a z + 5 a z + 16 a z + 7 a z - 4 a z + 4 4 6 4 8 4 10 4 12 4 5 5 7 5 > 3 a z + 11 a z + 4 a z - 3 a z + a z - 3 a z - 10 a z - 9 5 11 5 6 6 8 6 10 6 5 7 7 7 > 5 a z + 2 a z - 4 a z - 2 a z + 2 a z + a z + 3 a z + 9 7 6 8 8 8 > 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 127]], Vassiliev[3][Knot[10, 127]]} |
Out[19]= | {1, 1} |
In[20]:= | Kh[Knot[10, 127]][q, t] |
Out[20]= | -5 2 1 1 1 2 1 3 2 q + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 3 21 8 19 7 17 7 17 6 15 6 15 5 13 5 q q t q t q t q t q t q t q t 2 3 3 2 1 3 1 1 > ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- 13 4 11 4 11 3 9 3 9 2 7 2 7 5 q t q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 127], 2][q] |
Out[21]= | -28 2 4 6 11 12 4 22 17 9 28 17 12 q - --- + --- - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + 27 25 24 22 21 20 19 18 17 16 15 14 q q q q q q q q q q q q 25 11 12 17 4 9 8 -6 4 2 -3 > --- - --- - --- + --- - -- - -- + -- + q - -- + -- + q 13 12 11 10 9 8 7 5 4 q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10127 |
|