© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10126Visit 10126's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10126's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X8493 X5,14,6,15 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X13,6,14,7 X2837 |
Gauss Code: | {1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 -14 2 -16 -18 -6 -20 -10 -12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 2t-2 + 4t-1 - 5 + 4t - 2t2 + t3 |
Conway Polynomial: | 1 + 5z2 + 4z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {19, -2} |
Jones Polynomial: | - q-8 + q-7 - 2q-6 + 3q-5 - 3q-4 + 4q-3 - 2q-2 + 2q-1 - 1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-24 - q-22 - 2q-20 - q-18 + q-16 + q-14 + 3q-12 + 2q-10 + 2q-8 + q-6 - q-4 - 1 |
HOMFLY-PT Polynomial: | - 2a2 - 3a2z2 - a2z4 + 7a4 + 12a4z2 + 6a4z4 + a4z6 - 4a6 - 4a6z2 - a6z4 |
Kauffman Polynomial: | - 2az + az3 + 2a2 - 4a2z2 + 2a2z4 - 6a3z + 11a3z3 - 5a3z5 + a3z7 + 7a4 - 16a4z2 + 16a4z4 - 6a4z6 + a4z8 - 8a5z + 16a5z3 - 9a5z5 + 2a5z7 + 4a6 - 11a6z2 + 11a6z4 - 5a6z6 + a6z8 - a7z + 2a7z3 - 3a7z5 + a7z7 + a8z2 - 3a8z4 + a8z6 + 3a9z - 4a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {5, -9} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10126. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - q-22 + 2q-20 - 3q-19 - q-18 + 5q-17 - 4q-16 - 4q-15 + 8q-14 - 3q-13 - 7q-12 + 10q-11 - q-10 - 9q-9 + 10q-8 - 7q-6 + 6q-5 + q-4 - 4q-3 + 2q-2 + q-1 - 1 |
3 | - q-45 + q-44 - q-41 + 2q-40 - q-38 - 2q-37 + 4q-36 + 2q-35 - 3q-34 - 6q-33 + 4q-32 + 7q-31 - q-30 - 10q-29 - 2q-28 + 10q-27 + 5q-26 - 9q-25 - 10q-24 + 9q-23 + 11q-22 - 6q-21 - 16q-20 + 8q-19 + 14q-18 - 3q-17 - 19q-16 + 8q-15 + 13q-14 - q-13 - 16q-12 + 3q-11 + 10q-10 + 3q-9 - 9q-8 - 2q-7 + 4q-6 + 4q-5 - q-4 - 3q-3 - q-2 + 2q-1 + 2 - q - q2 - q3 + q4 |
4 | q-74 - q-73 - q-70 + 2q-69 - 2q-68 + q-67 + q-66 - 3q-65 + 3q-64 - 4q-63 + q-62 + 5q-61 - 3q-60 + 5q-59 - 9q-58 - 3q-57 + 7q-56 + 14q-54 - 11q-53 - 10q-52 - 4q-50 + 26q-49 - 3q-48 - 7q-47 - 9q-46 - 21q-45 + 27q-44 + 9q-43 + 8q-42 - 8q-41 - 41q-40 + 16q-39 + 14q-38 + 26q-37 - 54q-35 + 5q-34 + 14q-33 + 36q-32 + 6q-31 - 59q-30 - q-29 + 14q-28 + 40q-27 + 8q-26 - 60q-25 - 3q-24 + 13q-23 + 39q-22 + 11q-21 - 51q-20 - 10q-19 + 6q-18 + 34q-17 + 18q-16 - 33q-15 - 13q-14 - 7q-13 + 19q-12 + 22q-11 - 10q-10 - 7q-9 - 15q-8 + q-7 + 15q-6 + 4q-5 + 3q-4 - 10q-3 - 8q-2 + 4q-1 + 4 + 5q - q2 - 5q3 - q4 + 2q6 + q7 - q8 |
5 | - q-110 + q-109 + q-106 - 2q-104 + q-103 - q-101 + 2q-100 + 2q-99 - 3q-98 - 3q-95 + q-94 + 4q-93 + q-91 - 6q-89 - 4q-88 + q-87 + 3q-86 + 7q-85 + 8q-84 - 4q-83 - 9q-82 - 10q-81 - 7q-80 + 6q-79 + 20q-78 + 12q-77 + 2q-76 - 13q-75 - 24q-74 - 17q-73 + 8q-72 + 23q-71 + 30q-70 + 13q-69 - 17q-68 - 42q-67 - 32q-66 + q-65 + 43q-64 + 53q-63 + 22q-62 - 37q-61 - 71q-60 - 45q-59 + 25q-58 + 79q-57 + 71q-56 - 10q-55 - 88q-54 - 85q-53 - 5q-52 + 86q-51 + 104q-50 + 14q-49 - 92q-48 - 103q-47 - 25q-46 + 86q-45 + 118q-44 + 24q-43 - 94q-42 - 108q-41 - 30q-40 + 84q-39 + 123q-38 + 28q-37 - 97q-36 - 107q-35 - 34q-34 + 79q-33 + 123q-32 + 37q-31 - 84q-30 - 107q-29 - 45q-28 + 60q-27 + 111q-26 + 53q-25 - 50q-24 - 89q-23 - 59q-22 + 20q-21 + 77q-20 + 60q-19 - 2q-18 - 47q-17 - 56q-16 - 20q-15 + 26q-14 + 44q-13 + 27q-12 - q-11 - 27q-10 - 29q-9 - 12q-8 + 11q-7 + 22q-6 + 16q-5 + 3q-4 - 11q-3 - 17q-2 - 7q-1 + 4 + 8q + 8q2 + 3q3 - 5q4 - 6q5 - q6 + 2q8 + 2q9 - q11 |
6 | q-153 - q-152 - q-149 + 3q-146 - 2q-145 + q-143 - 2q-142 - q-141 - q-140 + 6q-139 - 2q-138 - q-137 + 3q-136 - 3q-135 - 2q-134 - 4q-133 + 8q-132 - q-131 - q-130 + 7q-129 - 2q-128 - 3q-127 - 11q-126 + 7q-125 - 3q-124 - 3q-123 + 13q-122 + 6q-121 + 5q-120 - 15q-119 + 4q-118 - 14q-117 - 17q-116 + 7q-115 + 12q-114 + 23q-113 - q-112 + 24q-111 - 14q-110 - 36q-109 - 22q-108 - 13q-107 + 14q-106 + 5q-105 + 67q-104 + 28q-103 - 9q-102 - 28q-101 - 52q-100 - 47q-99 - 52q-98 + 67q-97 + 72q-96 + 70q-95 + 42q-94 - 25q-93 - 95q-92 - 156q-91 - 21q-90 + 39q-89 + 120q-88 + 149q-87 + 91q-86 - 56q-85 - 222q-84 - 142q-83 - 73q-82 + 88q-81 + 216q-80 + 228q-79 + 47q-78 - 216q-77 - 225q-76 - 191q-75 + 11q-74 + 226q-73 + 322q-72 + 142q-71 - 180q-70 - 258q-69 - 263q-68 - 49q-67 + 213q-66 + 366q-65 + 191q-64 - 157q-63 - 267q-62 - 289q-61 - 72q-60 + 203q-59 + 380q-58 + 205q-57 - 152q-56 - 270q-55 - 295q-54 - 76q-53 + 202q-52 + 384q-51 + 210q-50 - 148q-49 - 273q-48 - 300q-47 - 84q-46 + 195q-45 + 380q-44 + 223q-43 - 117q-42 - 263q-41 - 303q-40 - 113q-39 + 154q-38 + 349q-37 + 241q-36 - 46q-35 - 203q-34 - 278q-33 - 160q-32 + 59q-31 + 259q-30 + 234q-29 + 47q-28 - 84q-27 - 194q-26 - 179q-25 - 51q-24 + 117q-23 + 165q-22 + 95q-21 + 35q-20 - 65q-19 - 125q-18 - 97q-17 - 6q-16 + 55q-15 + 60q-14 + 73q-13 + 30q-12 - 32q-11 - 57q-10 - 41q-9 - 15q-8 - 5q-7 + 33q-6 + 40q-5 + 18q-4 - 3q-3 - 14q-2 - 14q-1 - 25 - 5q + 10q2 + 12q3 + 9q4 + 4q5 + 4q6 - 10q7 - 6q8 - 2q9 + q12 + 5q13 - q14 - q18 - q19 + q20 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 126]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[15, 20, 16, 1], > X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], X[19, 12, 20, 13], > X[13, 6, 14, 7], X[2, 8, 3, 7]] |
In[3]:= | GaussCode[Knot[10, 126]] |
Out[3]= | GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, > 4] |
In[4]:= | DTCode[Knot[10, 126]] |
Out[4]= | DTCode[4, 8, -14, 2, -16, -18, -6, -20, -10, -12] |
In[5]:= | br = BR[Knot[10, 126]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, 1, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 126]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 126]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 126]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 126]][t] |
Out[10]= | -3 2 4 2 3 -5 + t - -- + - + 4 t - 2 t + t 2 t t |
In[11]:= | Conway[Knot[10, 126]][z] |
Out[11]= | 2 4 6 1 + 5 z + 4 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 126]} |
In[13]:= | {KnotDet[Knot[10, 126]], KnotSignature[Knot[10, 126]]} |
Out[13]= | {19, -2} |
In[14]:= | Jones[Knot[10, 126]][q] |
Out[14]= | -8 -7 2 3 3 4 2 2 -1 - q + q - -- + -- - -- + -- - -- + - 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 126]} |
In[16]:= | A2Invariant[Knot[10, 126]][q] |
Out[16]= | -24 -22 2 -18 -16 -14 3 2 2 -6 -4 -1 - q - q - --- - q + q + q + --- + --- + -- + q - q 20 12 10 8 q q q q |
In[17]:= | HOMFLYPT[Knot[10, 126]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 -2 a + 7 a - 4 a - 3 a z + 12 a z - 4 a z - a z + 6 a z - a z + 4 6 > a z |
In[18]:= | Kauffman[Knot[10, 126]][a, z] |
Out[18]= | 2 4 6 3 5 7 9 2 2 2 a + 7 a + 4 a - 2 a z - 6 a z - 8 a z - a z + 3 a z - 4 a z - 4 2 6 2 8 2 3 3 3 5 3 7 3 > 16 a z - 11 a z + a z + a z + 11 a z + 16 a z + 2 a z - 9 3 2 4 4 4 6 4 8 4 3 5 5 5 > 4 a z + 2 a z + 16 a z + 11 a z - 3 a z - 5 a z - 9 a z - 7 5 9 5 4 6 6 6 8 6 3 7 5 7 7 7 > 3 a z + a z - 6 a z - 5 a z + a z + a z + 2 a z + a z + 4 8 6 8 > a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 126]], Vassiliev[3][Knot[10, 126]]} |
Out[19]= | {5, -9} |
In[20]:= | Kh[Knot[10, 126]][q, t] |
Out[20]= | 2 1 1 1 2 1 2 2 1 2 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 17 7 13 6 13 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 2 2 > ----- + ---- + q t 5 2 3 q t q t |
In[21]:= | ColouredJones[Knot[10, 126], 2][q] |
Out[21]= | -23 -22 2 3 -18 5 4 4 8 3 7 10 -1 + q - q + --- - --- - q + --- - --- - --- + --- - --- - --- + --- - 20 19 17 16 15 14 13 12 11 q q q q q q q q q -10 9 10 7 6 -4 4 2 1 > q - -- + -- - -- + -- + q - -- + -- + - 9 8 6 5 3 2 q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10126 |
|