© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10125Visit 10125's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10125's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,14,6,15 X20,16,1,15 X16,10,17,9 X18,12,19,11 X10,18,11,17 X12,20,13,19 X13,6,14,7 X7283 |
Gauss Code: | {-1, 10, -2, 1, -3, 9, -10, 2, 5, -7, 6, -8, -9, 3, 4, -5, 7, -6, 8, -4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 2 -16 -18 6 -20 -10 -12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 2t-2 + 2t-1 - 1 + 2t - 2t2 + t3 |
Conway Polynomial: | 1 + 3z2 + 4z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {11, 2} |
Jones Polynomial: | - q-4 + q-3 - q-2 + 2q-1 - 1 + 2q - q2 + q3 - q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-12 - q-10 - q-8 + q-4 + 2q-2 + 3 + 2q2 + q4 - q8 - q10 - q12 |
HOMFLY-PT Polynomial: | - 3a-2 - 4a-2z2 - a-2z4 + 7 + 11z2 + 6z4 + z6 - 3a2 - 4a2z2 - a2z4 |
Kauffman Polynomial: | a-5z + a-4z2 - a-3z + a-3z3 + 3a-2 - 6a-2z2 + 2a-2z4 - 6a-1z + 8a-1z3 - 5a-1z5 + a-1z7 + 7 - 15z2 + 13z4 - 6z6 + z8 - 8az + 17az3 - 11az5 + 2az7 + 3a2 - 8a2z2 + 11a2z4 - 6a2z6 + a2z8 - 4a3z + 10a3z3 - 6a3z5 + a3z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 10125. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-13 - q-12 - q-11 + 2q-10 - q-9 - 2q-8 + 2q-7 - 2q-5 + 2q-4 - q-2 + 2q-1 + q2 - q3 + q4 - q6 + q8 - q9 - q10 + q11 |
3 | - q-27 + q-26 + q-25 - 2q-23 + 2q-21 + q-20 - 2q-19 - q-18 + q-17 + q-16 - q-15 - q-14 + q-13 - q-11 - q-10 + 2q-9 - 2q-7 - q-6 + 4q-5 + q-4 - 2q-3 - 3q-2 + 5q-1 + 2 - 3q - 4q2 + 6q3 + 2q4 - 4q5 - 4q6 + 6q7 + 3q8 - 5q9 - 5q10 + 5q11 + 4q12 - 3q13 - 4q14 + 2q15 + 3q16 - 2q17 - q18 + 2q20 - q21 |
4 | q-46 - q-45 - q-44 + 3q-41 - q-40 - q-39 - q-38 - 2q-37 + 4q-36 - 3q-32 + 3q-31 - q-30 + q-28 - 2q-27 + 3q-26 - q-25 - q-24 - 2q-22 + 3q-21 + q-20 - q-19 - q-18 - 4q-17 + q-16 + 3q-15 + q-14 + q-13 - 5q-12 - 2q-11 + 3q-10 + 3q-9 + 4q-8 - 5q-7 - 5q-6 + 2q-5 + 4q-4 + 6q-3 - 4q-2 - 7q-1 + 1 + 3q + 8q2 - 3q3 - 8q4 + 3q6 + 9q7 - 3q8 - 10q9 - q10 + 4q11 + 11q12 - 3q13 - 11q14 - 2q15 + 4q16 + 10q17 - q18 - 8q19 - 3q20 + 2q21 + 7q22 - q23 - 4q24 - q25 + q26 + 3q27 - 2q28 - q29 + q31 + q32 - q33 |
5 | - q-70 + q-69 + q-68 - q-65 - 2q-64 + 2q-62 + q-61 + q-60 - 2q-58 - 2q-57 + q-55 + q-54 + q-53 - q-51 - q-47 + q-44 + q-43 + q-42 - q-41 - q-40 - q-39 - q-38 + q-37 + 2q-36 + q-35 + 2q-34 - q-33 - 3q-32 - 2q-31 - q-30 + 5q-28 + 3q-27 - q-26 - 3q-25 - 6q-24 - 3q-23 + 4q-22 + 6q-21 + 4q-20 - q-19 - 7q-18 - 6q-17 + 6q-15 + 6q-14 + 3q-13 - 5q-12 - 6q-11 - 3q-10 + 3q-9 + 5q-8 + 6q-7 - 2q-6 - 4q-5 - 5q-4 - q-3 + 3q-2 + 7q-1 + 2 - 2q - 6q2 - 4q3 + 8q5 + 5q6 - 7q8 - 7q9 + 9q11 + 6q12 - q13 - 9q14 - 8q15 + 2q16 + 11q17 + 8q18 - 2q19 - 10q20 - 10q21 + 11q23 + 10q24 + q25 - 7q26 - 10q27 - 4q28 + 5q29 + 8q30 + 3q31 - q32 - 5q33 - 2q34 - q35 + q36 + q37 + q38 + q39 + q40 - 2q41 - q42 - q43 + q44 + 2q45 + q46 - q47 - q48 - q50 + q51 |
6 | q-99 - q-98 - q-97 + q-94 + 3q-92 - q-91 - 2q-90 - q-89 - q-88 - q-86 + 5q-85 - q-81 - q-80 - 4q-79 + 4q-78 - q-77 + q-75 + q-74 + q-73 - 3q-72 + 4q-71 - 2q-70 - 2q-69 - q-68 + q-66 - 2q-65 + 5q-64 - q-62 + q-61 - q-60 - q-59 - 4q-58 + 2q-57 - q-56 - q-55 + 5q-54 + 3q-53 + 2q-52 - 3q-51 + q-50 - 6q-49 - 7q-48 + 3q-47 + 3q-46 + 7q-45 + 3q-44 + 6q-43 - 6q-42 - 11q-41 - 3q-40 - 4q-39 + 5q-38 + 6q-37 + 12q-36 - q-35 - 7q-34 - 3q-33 - 10q-32 - q-31 + 2q-30 + 11q-29 + q-28 + 3q-26 - 8q-25 - 4q-24 - 3q-23 + 5q-22 - 3q-21 + 3q-20 + 9q-19 - q-17 - 4q-16 - 2q-15 - 11q-14 + 12q-12 + 7q-11 + 5q-10 - 7q-8 - 19q-7 - 5q-6 + 11q-5 + 13q-4 + 11q-3 + 5q-2 - 10q-1 - 26 - 9q + 10q2 + 18q3 + 16q4 + 8q5 - 12q6 - 32q7 - 12q8 + 9q9 + 21q10 + 19q11 + 11q12 - 14q13 - 35q14 - 13q15 + 10q16 + 24q17 + 18q18 + 10q19 - 16q20 - 36q21 - 11q22 + 12q23 + 28q24 + 18q25 + 8q26 - 20q27 - 39q28 - 12q29 + 11q30 + 31q31 + 23q32 + 13q33 - 18q34 - 40q35 - 19q36 + 3q37 + 24q38 + 24q39 + 20q40 - 7q41 - 29q42 - 20q43 - 4q44 + 11q45 + 14q46 + 17q47 + 2q48 - 14q49 - 12q50 - 4q51 + 2q52 + 5q53 + 9q54 + 5q55 - 5q56 - 6q57 - 2q58 - q59 + q60 + 4q61 + 4q62 - 2q63 - 3q64 - q65 - q66 + q68 + 2q69 - q71 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 125]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[20, 16, 1, 15], > X[16, 10, 17, 9], X[18, 12, 19, 11], X[10, 18, 11, 17], X[12, 20, 13, 19], > X[13, 6, 14, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 125]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, 5, -7, 6, -8, -9, 3, 4, -5, 7, -6, 8, > -4] |
In[4]:= | DTCode[Knot[10, 125]] |
Out[4]= | DTCode[4, 8, 14, 2, -16, -18, 6, -20, -10, -12] |
In[5]:= | br = BR[Knot[10, 125]] |
Out[5]= | BR[3, {1, 1, 1, 1, 1, -2, -1, -1, -1, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 125]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 125]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 125]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 125]][t] |
Out[10]= | -3 2 2 2 3 -1 + t - -- + - + 2 t - 2 t + t 2 t t |
In[11]:= | Conway[Knot[10, 125]][z] |
Out[11]= | 2 4 6 1 + 3 z + 4 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 125]} |
In[13]:= | {KnotDet[Knot[10, 125]], KnotSignature[Knot[10, 125]]} |
Out[13]= | {11, 2} |
In[14]:= | Jones[Knot[10, 125]][q] |
Out[14]= | -4 -3 -2 2 2 3 4 -1 - q + q - q + - + 2 q - q + q - q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 125]} |
In[16]:= | A2Invariant[Knot[10, 125]][q] |
Out[16]= | -12 -10 -8 -4 2 2 4 8 10 12 3 - q - q - q + q + -- + 2 q + q - q - q - q 2 q |
In[17]:= | HOMFLYPT[Knot[10, 125]][a, z] |
Out[17]= | 2 4 3 2 2 4 z 2 2 4 z 2 4 6 7 - -- - 3 a + 11 z - ---- - 4 a z + 6 z - -- - a z + z 2 2 2 a a a |
In[18]:= | Kauffman[Knot[10, 125]][a, z] |
Out[18]= | 2 2 3 2 z z 6 z 3 2 z 6 z 2 2 7 + -- + 3 a + -- - -- - --- - 8 a z - 4 a z - 15 z + -- - ---- - 8 a z + 2 5 3 a 4 2 a a a a a 3 3 4 5 z 8 z 3 3 3 4 2 z 2 4 5 z 5 > -- + ---- + 17 a z + 10 a z + 13 z + ---- + 11 a z - ---- - 11 a z - 3 a 2 a a a 7 3 5 6 2 6 z 7 3 7 8 2 8 > 6 a z - 6 z - 6 a z + -- + 2 a z + a z + z + a z a |
In[19]:= | {Vassiliev[2][Knot[10, 125]], Vassiliev[3][Knot[10, 125]]} |
Out[19]= | {3, 0} |
In[20]:= | Kh[Knot[10, 125]][q, t] |
Out[20]= | 3 1 1 1 1 1 q 5 5 2 9 3 2 q + q + ----- + ----- + ----- + ----- + ---- + - + q t + q t + q t 9 5 5 4 5 3 3 2 2 t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 125], 2][q] |
Out[21]= | -13 -12 -11 2 -9 2 2 2 2 -2 2 2 3 4 q - q - q + --- - q - -- + -- - -- + -- - q + - + q - q + q - 10 8 7 5 4 q q q q q q 6 8 9 10 11 > q + q - q - q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10125 |
|