© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.119
10119
10.121
10121
    10.120
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 10120   

Visit 10120's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10120's page at Knotilus!

Acknowledgement

10.120
KnotPlot

PD Presentation: X1627 X5,18,6,19 X13,20,14,1 X11,16,12,17 X3,10,4,11 X7,12,8,13 X9,4,10,5 X15,8,16,9 X19,14,20,15 X17,2,18,3

Gauss Code: {-1, 10, -5, 7, -2, 1, -6, 8, -7, 5, -4, 6, -3, 9, -8, 4, -10, 2, -9, 3}

DT (Dowker-Thistlethwaite) Code: 6 10 18 12 4 16 20 8 2 14

Minimum Braid Representative:


Length is 14, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 2--3 2 3 / NotAvailable 1

Alexander Polynomial: 8t-2 - 26t-1 + 37 - 26t + 8t2

Conway Polynomial: 1 + 6z2 + 8z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {105, -4}

Jones Polynomial: q-12 - 4q-11 + 8q-10 - 13q-9 + 16q-8 - 18q-7 + 17q-6 - 13q-5 + 10q-4 - 4q-3 + q-2

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-38 + q-36 - 3q-34 + q-32 - 5q-28 + 2q-26 - 2q-24 + q-22 + 2q-20 - q-18 + 5q-16 - 2q-14 + 2q-12 + 3q-10 - 3q-8 + q-6

HOMFLY-PT Polynomial: a4z4 + 3a6 + 7a6z2 + 4a6z4 + 3a8z2 + 3a8z4 - 3a10 - 4a10z2 + a12

Kauffman Polynomial: a4z4 + 4a5z5 - 3a6 + 7a6z2 - 11a6z4 + 10a6z6 + 2a7z + 5a7z3 - 17a7z5 + 13a7z7 - 3a8z4 - 9a8z6 + 10a8z8 - 4a9z + 26a9z3 - 44a9z5 + 16a9z7 + 3a9z9 + 3a10 - 7a10z2 + 17a10z4 - 33a10z6 + 16a10z8 - 8a11z + 29a11z3 - 33a11z5 + 7a11z7 + 3a11z9 + a12 + a12z2 + 6a12z4 - 13a12z6 + 6a12z8 - 2a13z + 8a13z3 - 10a13z5 + 4a13z7 + a14z2 - 2a14z4 + a14z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {6, -13}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-4 is the signature of 10120. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -3          1
j = -5         41
j = -7        6  
j = -9       74  
j = -11      106   
j = -13     87    
j = -15    810     
j = -17   58      
j = -19  38       
j = -21 15        
j = -23 3         
j = -251          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-34 - 4q-33 + 2q-32 + 15q-31 - 27q-30 - 8q-29 + 70q-28 - 59q-27 - 63q-26 + 158q-25 - 62q-24 - 154q-23 + 226q-22 - 27q-21 - 232q-20 + 239q-19 + 24q-18 - 255q-17 + 192q-16 + 62q-15 - 205q-14 + 109q-13 + 63q-12 - 110q-11 + 38q-10 + 31q-9 - 33q-8 + 7q-7 + 6q-6 - 4q-5 + q-4
3 q-66 - 4q-65 + 2q-64 + 9q-63 + q-62 - 30q-61 - 14q-60 + 71q-59 + 54q-58 - 116q-57 - 158q-56 + 151q-55 + 326q-54 - 125q-53 - 550q-52 + 5q-51 + 782q-50 + 237q-49 - 989q-48 - 555q-47 + 1090q-46 + 950q-45 - 1111q-44 - 1329q-43 + 1013q-42 + 1689q-41 - 855q-40 - 1967q-39 + 626q-38 + 2187q-37 - 384q-36 - 2294q-35 + 112q-34 + 2306q-33 + 163q-32 - 2212q-31 - 400q-30 + 1972q-29 + 615q-28 - 1669q-27 - 704q-26 + 1251q-25 + 741q-24 - 884q-23 - 629q-22 + 519q-21 + 504q-20 - 294q-19 - 314q-18 + 122q-17 + 192q-16 - 57q-15 - 92q-14 + 25q-13 + 37q-12 - 9q-11 - 13q-10 + 3q-9 + 6q-8 - 4q-7 + q-6


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 120]]
Out[2]=   
PD[X[1, 6, 2, 7], X[5, 18, 6, 19], X[13, 20, 14, 1], X[11, 16, 12, 17], 
 
>   X[3, 10, 4, 11], X[7, 12, 8, 13], X[9, 4, 10, 5], X[15, 8, 16, 9], 
 
>   X[19, 14, 20, 15], X[17, 2, 18, 3]]
In[3]:=
GaussCode[Knot[10, 120]]
Out[3]=   
GaussCode[-1, 10, -5, 7, -2, 1, -6, 8, -7, 5, -4, 6, -3, 9, -8, 4, -10, 2, -9, 
 
>   3]
In[4]:=
DTCode[Knot[10, 120]]
Out[4]=   
DTCode[6, 10, 18, 12, 4, 16, 20, 8, 2, 14]
In[5]:=
br = BR[Knot[10, 120]]
Out[5]=   
BR[5, {-1, -1, -2, 1, 3, 2, -1, -4, -3, -2, -2, -3, -3, -4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 14}
In[7]:=
BraidIndex[Knot[10, 120]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 120]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 120]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, {2, 3}, 2, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 120]][t]
Out[10]=   
     8    26             2
37 + -- - -- - 26 t + 8 t
      2   t
     t
In[11]:=
Conway[Knot[10, 120]][z]
Out[11]=   
       2      4
1 + 6 z  + 8 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 120]}
In[13]:=
{KnotDet[Knot[10, 120]], KnotSignature[Knot[10, 120]]}
Out[13]=   
{105, -4}
In[14]:=
Jones[Knot[10, 120]][q]
Out[14]=   
 -12    4     8    13   16   18   17   13   10   4     -2
q    - --- + --- - -- + -- - -- + -- - -- + -- - -- + q
        11    10    9    8    7    6    5    4    3
       q     q     q    q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 120]}
In[16]:=
A2Invariant[Knot[10, 120]][q]
Out[16]=   
 -38    -36    3     -32    5     2     2     -22    2     -18    5     2
q    + q    - --- + q    - --- + --- - --- + q    + --- - q    + --- - --- + 
               34           28    26    24           20           16    14
              q            q     q     q            q            q     q
 
     2     3    3     -6
>   --- + --- - -- + q
     12    10    8
    q     q     q
In[17]:=
HOMFLYPT[Knot[10, 120]][a, z]
Out[17]=   
   6      10    12      6  2      8  2      10  2    4  4      6  4      8  4
3 a  - 3 a   + a   + 7 a  z  + 3 a  z  - 4 a   z  + a  z  + 4 a  z  + 3 a  z
In[18]:=
Kauffman[Knot[10, 120]][a, z]
Out[18]=   
    6      10    12      7        9        11        13        6  2
-3 a  + 3 a   + a   + 2 a  z - 4 a  z - 8 a   z - 2 a   z + 7 a  z  - 
 
       10  2    12  2    14  2      7  3       9  3       11  3      13  3
>   7 a   z  + a   z  + a   z  + 5 a  z  + 26 a  z  + 29 a   z  + 8 a   z  + 
 
     4  4       6  4      8  4       10  4      12  4      14  4      5  5
>   a  z  - 11 a  z  - 3 a  z  + 17 a   z  + 6 a   z  - 2 a   z  + 4 a  z  - 
 
        7  5       9  5       11  5       13  5       6  6      8  6
>   17 a  z  - 44 a  z  - 33 a   z  - 10 a   z  + 10 a  z  - 9 a  z  - 
 
        10  6       12  6    14  6       7  7       9  7      11  7
>   33 a   z  - 13 a   z  + a   z  + 13 a  z  + 16 a  z  + 7 a   z  + 
 
       13  7       8  8       10  8      12  8      9  9      11  9
>   4 a   z  + 10 a  z  + 16 a   z  + 6 a   z  + 3 a  z  + 3 a   z
In[19]:=
{Vassiliev[2][Knot[10, 120]], Vassiliev[3][Knot[10, 120]]}
Out[19]=   
{6, -13}
In[20]:=
Kh[Knot[10, 120]][q, t]
Out[20]=   
 -5    -3      1        3        1        5        3        8        5
q   + q   + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 
             25  10    23  9    21  9    21  8    19  8    19  7    17  7
            q   t     q   t    q   t    q   t    q   t    q   t    q   t
 
      8        8        10       8        7        10       6        7
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
     17  6    15  6    15  5    13  5    13  4    11  4    11  3    9  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
      4       6      4
>   ----- + ----- + ----
     9  2    7  2    5
    q  t    q  t    q  t
In[21]:=
ColouredJones[Knot[10, 120], 2][q]
Out[21]=   
 -34    4     2    15    27     8    70    59    63    158   62    154   226
q    - --- + --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 
        33    32    31    30    29    28    27    26    25    24    23    22
       q     q     q     q     q     q     q     q     q     q     q     q
 
    27    232   239   24    255   192   62    205   109   63    110   38
>   --- - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + --- + 
     21    20    19    18    17    16    15    14    13    12    11    10
    q     q     q     q     q     q     q     q     q     q     q     q
 
    31   33   7    6    4     -4
>   -- - -- + -- + -- - -- + q
     9    8    7    6    5
    q    q    q    q    q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10120
10.119
10119
10.121
10121