© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10119Visit 10119's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10119's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X7,18,8,19 X3948 X17,3,18,2 X5,15,6,14 X9,17,10,16 X15,11,16,10 X11,5,12,4 X13,20,14,1 X19,12,20,13 |
Gauss Code: | {-1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, 10, -9, 5, -7, 6, -4, 2, -10, 9} |
DT (Dowker-Thistlethwaite) Code: | 6 8 14 18 16 4 20 10 2 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 10t-2 - 23t-1 + 31 - 23t + 10t2 - 2t3 |
Conway Polynomial: | 1 - z2 - 2z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11a84, ...} |
Determinant and Signature: | {101, 0} |
Jones Polynomial: | q-4 - 4q-3 + 9q-2 - 13q-1 + 16 - 17q + 16q2 - 12q3 + 8q4 - 4q5 + q6 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-12 - 2q-10 + 2q-8 + 2q-6 - 3q-4 + 3q-2 - 3 + q2 + q4 - q6 + 4q8 - 3q10 + q12 + q14 - 2q16 + q18 |
HOMFLY-PT Polynomial: | a-4z2 + a-4z4 + a-2 - a-2z2 - 2a-2z4 - a-2z6 - 1 - 2z2 - 2z4 - z6 + a2 + a2z2 + a2z4 |
Kauffman Polynomial: | a-6z2 - 2a-6z4 + a-6z6 - a-5z + 7a-5z3 - 10a-5z5 + 4a-5z7 + 8a-4z4 - 14a-4z6 + 6a-4z8 - 3a-3z + 19a-3z3 - 26a-3z5 + 5a-3z7 + 3a-3z9 - a-2 + a-2z2 + 13a-2z4 - 31a-2z6 + 15a-2z8 - 4a-1z + 22a-1z3 - 37a-1z5 + 13a-1z7 + 3a-1z9 - 1 + 6z2 - 7z4 - 7z6 + 9z8 - 2az + 9az3 - 17az5 + 12az7 - a2 + 4a2z2 - 9a2z4 + 9a2z6 - a3z3 + 4a3z5 + a4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10119. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-12 - 4q-11 + 5q-10 + 7q-9 - 30q-8 + 27q-7 + 34q-6 - 99q-5 + 56q-4 + 97q-3 - 185q-2 + 59q-1 + 173 - 232q + 26q2 + 216q3 - 214q4 - 21q5 + 206q6 - 144q7 - 54q8 + 146q9 - 61q10 - 54q11 + 67q12 - 9q13 - 26q14 + 15q15 + 2q16 - 4q17 + q18 |
3 | q-24 - 4q-23 + 5q-22 + 3q-21 - 10q-20 - 9q-19 + 28q-18 + 23q-17 - 74q-16 - 45q-15 + 151q-14 + 100q-13 - 261q-12 - 227q-11 + 414q-10 + 417q-9 - 547q-8 - 701q-7 + 645q-6 + 1028q-5 - 653q-4 - 1370q-3 + 584q-2 + 1654q-1 - 427 - 1864q + 229q2 + 1962q3 + 5q4 - 1971q5 - 232q6 + 1881q7 + 458q8 - 1721q9 - 648q10 + 1476q11 + 816q12 - 1196q13 - 901q14 + 861q15 + 920q16 - 534q17 - 843q18 + 243q19 + 690q20 - 27q21 - 495q22 - 95q23 + 304q24 + 128q25 - 152q26 - 105q27 + 55q28 + 67q29 - 15q30 - 29q31 + q32 + 9q33 + 2q34 - 4q35 + q36 |
4 | q-40 - 4q-39 + 5q-38 + 3q-37 - 14q-36 + 11q-35 - 8q-34 + 27q-33 - 2q-32 - 91q-31 + 63q-30 + 38q-29 + 124q-28 - 84q-27 - 454q-26 + 151q-25 + 403q-24 + 666q-23 - 309q-22 - 1752q-21 - 242q-20 + 1345q-19 + 2698q-18 + 81q-17 - 4508q-16 - 2602q-15 + 1895q-14 + 6895q-13 + 2925q-12 - 7376q-11 - 7596q-10 - 153q-9 + 11442q-8 + 8713q-7 - 7653q-6 - 12982q-5 - 5243q-4 + 13309q-3 + 14854q-2 - 4667q-1 - 15659 - 10923q + 11734q2 + 18417q3 - 359q4 - 14952q5 - 14791q6 + 8212q7 + 18858q8 + 3581q9 - 12057q10 - 16512q11 + 3954q12 + 17045q13 + 6885q14 - 7818q15 - 16431q16 - 726q17 + 13279q18 + 9273q19 - 2500q20 - 14134q21 - 4976q22 + 7637q23 + 9461q24 + 2669q25 - 9280q26 - 6835q27 + 1610q28 + 6610q29 + 5323q30 - 3503q31 - 5254q32 - 2044q33 + 2383q34 + 4410q35 + 229q36 - 2063q37 - 2244q38 - 284q39 + 1908q40 + 923q41 - 60q42 - 912q43 - 653q44 + 343q45 + 344q46 + 256q47 - 123q48 - 234q49 - 2q50 + 24q51 + 78q52 + 9q53 - 35q54 - 2q55 - 5q56 + 9q57 + 2q58 - 4q59 + q60 |
5 | q-60 - 4q-59 + 5q-58 + 3q-57 - 14q-56 + 7q-55 + 12q-54 - 9q-53 + 2q-52 - 9q-51 - 33q-50 + 34q-49 + 96q-48 - q-47 - 133q-46 - 198q-45 - 45q-44 + 361q-43 + 615q-42 + 176q-41 - 928q-40 - 1566q-39 - 611q-38 + 1790q-37 + 3599q-36 + 2103q-35 - 2904q-34 - 7396q-33 - 5625q-32 + 3546q-31 + 13217q-30 + 12681q-29 - 2018q-28 - 20758q-27 - 24745q-26 - 3794q-25 + 28465q-24 + 41826q-23 + 16513q-22 - 33162q-21 - 63145q-20 - 37406q-19 + 31853q-18 + 85046q-17 + 65902q-16 - 21353q-15 - 103670q-14 - 99257q-13 + 1431q-12 + 114703q-11 + 132782q-10 + 26501q-9 - 115969q-8 - 161747q-7 - 58453q-6 + 107326q-5 + 182525q-4 + 90096q-3 - 91167q-2 - 193539q-1 - 117398 + 70496q + 195494q2 + 138440q3 - 48880q4 - 190371q5 - 152563q6 + 28179q7 + 180507q8 + 161160q9 - 9396q10 - 167906q11 - 165525q12 - 8048q13 + 153331q14 + 167338q15 + 24919q16 - 136672q17 - 166996q18 - 42344q19 + 117290q20 + 164281q21 + 60130q22 - 94208q23 - 157705q24 - 77858q25 + 67383q26 + 146068q27 + 92962q28 - 37512q29 - 127723q30 - 103332q31 + 6837q32 + 103113q33 + 105906q34 + 21200q35 - 73282q36 - 99477q37 - 43024q38 + 41841q39 + 84185q40 + 55504q41 - 12860q42 - 62501q43 - 57548q44 - 9576q45 + 38553q46 + 50391q47 + 22875q48 - 16878q49 - 37290q50 - 26863q51 + 908q52 + 22560q53 + 23717q54 + 7863q55 - 10010q56 - 16735q57 - 10271q58 + 1607q59 + 9376q60 + 8706q61 + 2301q62 - 3818q63 - 5523q64 - 3068q65 + 615q66 + 2741q67 + 2323q68 + 508q69 - 964q70 - 1233q71 - 629q72 + 142q73 + 535q74 + 386q75 + 43q76 - 157q77 - 149q78 - 74q79 + 29q80 + 71q81 + 20q82 - 11q83 - 8q84 - 8q85 - 5q86 + 9q87 + 2q88 - 4q89 + q90 |
6 | q-84 - 4q-83 + 5q-82 + 3q-81 - 14q-80 + 7q-79 + 8q-78 + 11q-77 - 34q-76 - 5q-75 + 49q-74 - 52q-73 + 42q-72 + 55q-71 - 16q-70 - 199q-69 - 120q-68 + 266q-67 + 109q-66 + 369q-65 + 221q-64 - 502q-63 - 1411q-62 - 1037q-61 + 1067q-60 + 2009q-59 + 3263q-58 + 1772q-57 - 2932q-56 - 8255q-55 - 8165q-54 + 734q-53 + 10333q-52 + 19492q-51 + 15681q-50 - 4874q-49 - 32343q-48 - 43985q-47 - 21110q-46 + 22346q-45 + 72557q-44 + 83394q-43 + 29488q-42 - 70701q-41 - 149712q-40 - 133588q-39 - 20098q-38 + 157234q-37 + 267735q-36 + 205459q-35 - 34549q-34 - 312460q-33 - 421230q-32 - 263289q-31 + 145088q-30 + 537974q-29 + 622264q-28 + 263383q-27 - 355208q-26 - 821489q-25 - 807055q-24 - 186409q-23 + 662338q-22 + 1169119q-21 + 905971q-20 - 30361q-19 - 1046864q-18 - 1479924q-17 - 886523q-16 + 382318q-15 + 1507905q-14 + 1658528q-13 + 667373q-12 - 843657q-11 - 1908538q-10 - 1666401q-9 - 260131q-8 + 1404434q-7 + 2136498q-6 + 1414673q-5 - 296676q-4 - 1893519q-3 - 2157307q-2 - 931323q-1 + 976970 + 2187926q + 1883026q2 + 273280q3 - 1577469q4 - 2260711q5 - 1359164q6 + 515939q7 + 1970649q8 + 2026626q9 + 657080q10 - 1212056q11 - 2140097q12 - 1543644q13 + 170021q14 + 1695002q15 + 2005998q16 + 889871q17 - 894103q18 - 1964344q19 - 1634951q20 - 119797q21 + 1414470q22 + 1949534q23 + 1105672q24 - 549293q25 - 1748009q26 - 1721154q27 - 468324q28 + 1041271q29 + 1832666q30 + 1351700q31 - 80578q32 - 1385111q33 - 1734843q34 - 882073q35 + 489665q36 + 1523101q37 + 1513405q38 + 480296q39 - 793359q40 - 1510284q41 - 1196663q42 - 174355q43 + 936713q44 + 1389200q45 + 920165q46 - 71166q47 - 962377q48 - 1177502q49 - 692790q50 + 205544q51 + 900348q52 + 980938q53 + 483253q54 - 261150q55 - 763179q56 - 797916q57 - 338753q58 + 258986q59 + 632205q60 + 607679q61 + 237928q62 - 207811q63 - 502014q64 - 455762q65 - 169952q66 + 165312q67 + 362644q68 + 331550q69 + 132952q70 - 121546q71 - 253500q72 - 232947q73 - 92693q74 + 70659q75 + 167622q76 + 162419q77 + 63176q78 - 39317q79 - 104108q80 - 100827q81 - 48250q82 + 18940q83 + 63137q84 + 59060q85 + 31458q86 - 7345q87 - 31743q88 - 35574q89 - 19152q90 + 3147q91 + 14755q92 + 18227q93 + 10641q94 + 740q95 - 7628q96 - 8642q97 - 4766q98 - 1066q99 + 2879q100 + 3644q101 + 2687q102 + 156q103 - 1074q104 - 1170q105 - 1077q106 - 193q107 + 324q108 + 597q109 + 212q110 + 32q111 - 37q112 - 173q113 - 87q114 - 19q115 + 76q116 + 13q117 + 16q119 - 14q120 - 8q121 - 5q122 + 9q123 + 2q124 - 4q125 + q126 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 119]] |
Out[2]= | PD[X[1, 6, 2, 7], X[7, 18, 8, 19], X[3, 9, 4, 8], X[17, 3, 18, 2], > X[5, 15, 6, 14], X[9, 17, 10, 16], X[15, 11, 16, 10], X[11, 5, 12, 4], > X[13, 20, 14, 1], X[19, 12, 20, 13]] |
In[3]:= | GaussCode[Knot[10, 119]] |
Out[3]= | GaussCode[-1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, 10, -9, 5, -7, 6, -4, 2, -10, > 9] |
In[4]:= | DTCode[Knot[10, 119]] |
Out[4]= | DTCode[6, 8, 14, 18, 16, 4, 20, 10, 2, 12] |
In[5]:= | br = BR[Knot[10, 119]] |
Out[5]= | BR[4, {-1, -1, 2, -1, -3, 2, -1, 2, 3, 3, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 119]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 119]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 119]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 119]][t] |
Out[10]= | 2 10 23 2 3 31 - -- + -- - -- - 23 t + 10 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 119]][z] |
Out[11]= | 2 4 6 1 - z - 2 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 119], Knot[11, Alternating, 84]} |
In[13]:= | {KnotDet[Knot[10, 119]], KnotSignature[Knot[10, 119]]} |
Out[13]= | {101, 0} |
In[14]:= | Jones[Knot[10, 119]][q] |
Out[14]= | -4 4 9 13 2 3 4 5 6 16 + q - -- + -- - -- - 17 q + 16 q - 12 q + 8 q - 4 q + q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 119]} |
In[16]:= | A2Invariant[Knot[10, 119]][q] |
Out[16]= | -12 2 2 2 3 3 2 4 6 8 10 12 14 -3 + q - --- + -- + -- - -- + -- + q + q - q + 4 q - 3 q + q + q - 10 8 6 4 2 q q q q q 16 18 > 2 q + q |
In[17]:= | HOMFLYPT[Knot[10, 119]][a, z] |
Out[17]= | 2 2 4 4 6 -2 2 2 z z 2 2 4 z 2 z 2 4 6 z -1 + a + a - 2 z + -- - -- + a z - 2 z + -- - ---- + a z - z - -- 4 2 4 2 2 a a a a a |
In[18]:= | Kauffman[Knot[10, 119]][a, z] |
Out[18]= | 2 2 3 -2 2 z 3 z 4 z 2 z z 2 2 7 z -1 - a - a - -- - --- - --- - 2 a z + 6 z + -- + -- + 4 a z + ---- + 5 3 a 6 2 5 a a a a a 3 3 4 4 4 19 z 22 z 3 3 3 4 2 z 8 z 13 z 2 4 > ----- + ----- + 9 a z - a z - 7 z - ---- + ---- + ----- - 9 a z + 3 a 6 4 2 a a a a 5 5 5 6 6 4 4 10 z 26 z 37 z 5 3 5 6 z 14 z > a z - ----- - ----- - ----- - 17 a z + 4 a z - 7 z + -- - ----- - 5 3 a 6 4 a a a a 6 7 7 7 8 8 31 z 2 6 4 z 5 z 13 z 7 8 6 z 15 z > ----- + 9 a z + ---- + ---- + ----- + 12 a z + 9 z + ---- + ----- + 2 5 3 a 4 2 a a a a a 9 9 3 z 3 z > ---- + ---- 3 a a |
In[19]:= | {Vassiliev[2][Knot[10, 119]], Vassiliev[3][Knot[10, 119]]} |
Out[19]= | {-1, 0} |
In[20]:= | Kh[Knot[10, 119]][q, t] |
Out[20]= | 9 1 3 1 6 3 7 6 3 - + 8 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 9 q t + 8 q t + q 9 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t 3 2 5 2 5 3 7 3 7 4 9 4 9 5 > 7 q t + 9 q t + 5 q t + 7 q t + 3 q t + 5 q t + q t + 11 5 13 6 > 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 119], 2][q] |
Out[21]= | -12 4 5 7 30 27 34 99 56 97 185 59 173 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - --- + -- - 232 q + 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 2 3 4 5 6 7 8 9 > 26 q + 216 q - 214 q - 21 q + 206 q - 144 q - 54 q + 146 q - 10 11 12 13 14 15 16 17 18 > 61 q - 54 q + 67 q - 9 q - 26 q + 15 q + 2 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10119 |
|