© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10118Visit 10118's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10118's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X18,6,19,5 X20,13,1,14 X12,19,13,20 X14,7,15,8 X8394 X2,16,3,15 X10,18,11,17 X16,10,17,9 X4,11,5,12 |
Gauss Code: | {1, -7, 6, -10, 2, -1, 5, -6, 9, -8, 10, -4, 3, -5, 7, -9, 8, -2, 4, -3} |
DT (Dowker-Thistlethwaite) Code: | 6 8 18 14 16 4 20 2 10 12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-4 - 5t-3 + 12t-2 - 19t-1 + 23 - 19t + 12t2 - 5t3 + t4 |
Conway Polynomial: | 1 + 2z4 + 3z6 + z8 |
Other knots with the same Alexander/Conway Polynomial: | {K11a257, ...} |
Determinant and Signature: | {97, 0} |
Jones Polynomial: | - q-5 + 4q-4 - 8q-3 + 12q-2 - 15q-1 + 17 - 15q + 12q2 - 8q3 + 4q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-14 + 2q-12 - 2q-10 + 2q-8 - 2q-4 + 4q-2 - 3 + 4q2 - 2q4 + 2q8 - 2q10 + 2q12 - q14 |
HOMFLY-PT Polynomial: | - 2a-2z2 - 3a-2z4 - a-2z6 + 1 + 4z2 + 8z4 + 5z6 + z8 - 2a2z2 - 3a2z4 - a2z6 |
Kauffman Polynomial: | - a-5z3 + a-5z5 + a-4z2 - 6a-4z4 + 4a-4z6 - a-3z + 5a-3z3 - 12a-3z5 + 7a-3z7 - 2a-2z2 + 6a-2z4 - 11a-2z6 + 7a-2z8 - 3a-1z + 15a-1z3 - 20a-1z5 + 6a-1z7 + 3a-1z9 + 1 - 6z2 + 24z4 - 30z6 + 14z8 - 3az + 15az3 - 20az5 + 6az7 + 3az9 - 2a2z2 + 6a2z4 - 11a2z6 + 7a2z8 - a3z + 5a3z3 - 12a3z5 + 7a3z7 + a4z2 - 6a4z4 + 4a4z6 - a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10118. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 4q-14 + 3q-13 + 11q-12 - 27q-11 + 8q-10 + 52q-9 - 76q-8 - 8q-7 + 130q-6 - 122q-5 - 55q-4 + 208q-3 - 134q-2 - 107q-1 + 241 - 107q - 134q2 + 208q3 - 55q4 - 122q5 + 130q6 - 8q7 - 76q8 + 52q9 + 8q10 - 27q11 + 11q12 + 3q13 - 4q14 + q15 |
3 | - q-30 + 4q-29 - 3q-28 - 6q-27 + 4q-26 + 18q-25 - 9q-24 - 48q-23 + 21q-22 + 99q-21 - 14q-20 - 194q-19 - 26q-18 + 323q-17 + 129q-16 - 466q-15 - 307q-14 + 582q-13 + 562q-12 - 650q-11 - 851q-10 + 639q-9 + 1148q-8 - 565q-7 - 1402q-6 + 430q-5 + 1603q-4 - 274q-3 - 1714q-2 + 84q-1 + 1769 + 84q - 1714q2 - 274q3 + 1603q4 + 430q5 - 1402q6 - 565q7 + 1148q8 + 639q9 - 851q10 - 650q11 + 562q12 + 582q13 - 307q14 - 466q15 + 129q16 + 323q17 - 26q18 - 194q19 - 14q20 + 99q21 + 21q22 - 48q23 - 9q24 + 18q25 + 4q26 - 6q27 - 3q28 + 4q29 - q30 |
4 | q-50 - 4q-49 + 3q-48 + 6q-47 - 9q-46 + 5q-45 - 17q-44 + 22q-43 + 31q-42 - 60q-41 - 4q-40 - 61q-39 + 131q-38 + 193q-37 - 192q-36 - 199q-35 - 372q-34 + 386q-33 + 907q-32 - 7q-31 - 645q-30 - 1686q-29 + 78q-28 + 2318q-27 + 1584q-26 - 286q-25 - 4171q-24 - 2229q-23 + 2995q-22 + 4722q-21 + 2593q-20 - 6078q-19 - 6548q-18 + 1037q-17 + 7450q-16 + 7776q-15 - 5461q-14 - 10670q-13 - 3245q-12 + 7881q-11 + 12898q-10 - 2626q-9 - 12675q-8 - 7693q-7 + 6233q-6 + 16074q-5 + 739q-4 - 12520q-3 - 10838q-2 + 3699q-1 + 17069 + 3699q - 10838q2 - 12520q3 + 739q4 + 16074q5 + 6233q6 - 7693q7 - 12675q8 - 2626q9 + 12898q10 + 7881q11 - 3245q12 - 10670q13 - 5461q14 + 7776q15 + 7450q16 + 1037q17 - 6548q18 - 6078q19 + 2593q20 + 4722q21 + 2995q22 - 2229q23 - 4171q24 - 286q25 + 1584q26 + 2318q27 + 78q28 - 1686q29 - 645q30 - 7q31 + 907q32 + 386q33 - 372q34 - 199q35 - 192q36 + 193q37 + 131q38 - 61q39 - 4q40 - 60q41 + 31q42 + 22q43 - 17q44 + 5q45 - 9q46 + 6q47 + 3q48 - 4q49 + q50 |
5 | - q-75 + 4q-74 - 3q-73 - 6q-72 + 9q-71 - 6q-69 + 4q-68 - 5q-67 - 9q-66 + 37q-65 + 29q-64 - 48q-63 - 83q-62 - 68q-61 + 46q-60 + 244q-59 + 301q-58 - 24q-57 - 573q-56 - 787q-55 - 287q-54 + 875q-53 + 1843q-52 + 1364q-51 - 921q-50 - 3428q-49 - 3602q-48 - 259q-47 + 4964q-46 + 7568q-45 + 3700q-44 - 5394q-43 - 12667q-42 - 10365q-41 + 2685q-40 + 17588q-39 + 20463q-38 + 4813q-37 - 19877q-36 - 32656q-35 - 18124q-34 + 16897q-33 + 44345q-32 + 36630q-31 - 6744q-30 - 52443q-29 - 57942q-28 - 10715q-27 + 54076q-26 + 78732q-25 + 34017q-24 - 48179q-23 - 95785q-22 - 59901q-21 + 35233q-20 + 106740q-19 + 85226q-18 - 17417q-17 - 111131q-16 - 107011q-15 - 2543q-14 + 109646q-13 + 123904q-12 + 22010q-11 - 104034q-10 - 135442q-9 - 39509q-8 + 96005q-7 + 142679q-6 + 54100q-5 - 86907q-4 - 146180q-3 - 66504q-2 + 77050q-1 + 147507 + 77050q - 66504q2 - 146180q3 - 86907q4 + 54100q5 + 142679q6 + 96005q7 - 39509q8 - 135442q9 - 104034q10 + 22010q11 + 123904q12 + 109646q13 - 2543q14 - 107011q15 - 111131q16 - 17417q17 + 85226q18 + 106740q19 + 35233q20 - 59901q21 - 95785q22 - 48179q23 + 34017q24 + 78732q25 + 54076q26 - 10715q27 - 57942q28 - 52443q29 - 6744q30 + 36630q31 + 44345q32 + 16897q33 - 18124q34 - 32656q35 - 19877q36 + 4813q37 + 20463q38 + 17588q39 + 2685q40 - 10365q41 - 12667q42 - 5394q43 + 3700q44 + 7568q45 + 4964q46 - 259q47 - 3602q48 - 3428q49 - 921q50 + 1364q51 + 1843q52 + 875q53 - 287q54 - 787q55 - 573q56 - 24q57 + 301q58 + 244q59 + 46q60 - 68q61 - 83q62 - 48q63 + 29q64 + 37q65 - 9q66 - 5q67 + 4q68 - 6q69 + 9q71 - 6q72 - 3q73 + 4q74 - q75 |
6 | q-105 - 4q-104 + 3q-103 + 6q-102 - 9q-101 + q-99 + 19q-98 - 21q-97 - 17q-96 + 32q-95 - 45q-94 + 8q-93 + 50q-92 + 128q-91 - 41q-90 - 167q-89 - 62q-88 - 286q-87 - 16q-86 + 387q-85 + 900q-84 + 404q-83 - 424q-82 - 881q-81 - 2094q-80 - 1401q-79 + 650q-78 + 3938q-77 + 4458q-76 + 2396q-75 - 1204q-74 - 8305q-73 - 10766q-72 - 6703q-71 + 5801q-70 + 16461q-69 + 20757q-68 + 14405q-67 - 9709q-66 - 33262q-65 - 42976q-64 - 22056q-63 + 15948q-62 + 58065q-61 + 77950q-60 + 42156q-59 - 29551q-58 - 104768q-57 - 122544q-56 - 71254q-55 + 47281q-54 + 171007q-53 + 198422q-52 + 103304q-51 - 89064q-50 - 253004q-49 - 297475q-48 - 141664q-47 + 149780q-46 + 383153q-45 + 408243q-44 + 154486q-43 - 230153q-42 - 546632q-41 - 530354q-40 - 143910q-39 + 380359q-38 + 726609q-37 + 615539q-36 + 96521q-35 - 581428q-34 - 920446q-33 - 660120q-32 + 60354q-31 + 813628q-30 + 1064305q-29 + 635918q-28 - 301929q-27 - 1072972q-26 - 1148980q-25 - 451384q-24 + 602132q-23 + 1278685q-22 + 1132696q-21 + 144123q-20 - 950647q-19 - 1413224q-18 - 910924q-17 + 247709q-16 + 1245688q-15 + 1420940q-14 + 538462q-13 - 703247q-12 - 1458570q-11 - 1189250q-10 - 66498q-9 + 1100658q-8 + 1522082q-7 + 790633q-6 - 474803q-5 - 1403113q-4 - 1322934q-3 - 286649q-2 + 950870q-1 + 1538859 + 950870q - 286649q2 - 1322934q3 - 1403113q4 - 474803q5 + 790633q6 + 1522082q7 + 1100658q8 - 66498q9 - 1189250q10 - 1458570q11 - 703247q12 + 538462q13 + 1420940q14 + 1245688q15 + 247709q16 - 910924q17 - 1413224q18 - 950647q19 + 144123q20 + 1132696q21 + 1278685q22 + 602132q23 - 451384q24 - 1148980q25 - 1072972q26 - 301929q27 + 635918q28 + 1064305q29 + 813628q30 + 60354q31 - 660120q32 - 920446q33 - 581428q34 + 96521q35 + 615539q36 + 726609q37 + 380359q38 - 143910q39 - 530354q40 - 546632q41 - 230153q42 + 154486q43 + 408243q44 + 383153q45 + 149780q46 - 141664q47 - 297475q48 - 253004q49 - 89064q50 + 103304q51 + 198422q52 + 171007q53 + 47281q54 - 71254q55 - 122544q56 - 104768q57 - 29551q58 + 42156q59 + 77950q60 + 58065q61 + 15948q62 - 22056q63 - 42976q64 - 33262q65 - 9709q66 + 14405q67 + 20757q68 + 16461q69 + 5801q70 - 6703q71 - 10766q72 - 8305q73 - 1204q74 + 2396q75 + 4458q76 + 3938q77 + 650q78 - 1401q79 - 2094q80 - 881q81 - 424q82 + 404q83 + 900q84 + 387q85 - 16q86 - 286q87 - 62q88 - 167q89 - 41q90 + 128q91 + 50q92 + 8q93 - 45q94 + 32q95 - 17q96 - 21q97 + 19q98 + q99 - 9q101 + 6q102 + 3q103 - 4q104 + q105 |
7 | - q-140 + 4q-139 - 3q-138 - 6q-137 + 9q-136 - q-134 - 14q-133 - 2q-132 + 43q-131 - 6q-130 - 24q-129 + 8q-128 - 27q-127 - 23q-126 - 69q-125 - 8q-124 + 242q-123 + 163q-122 + 35q-121 - 72q-120 - 385q-119 - 411q-118 - 518q-117 - 142q-116 + 1078q-115 + 1554q-114 + 1474q-113 + 483q-112 - 1739q-111 - 3318q-110 - 4454q-109 - 3310q-108 + 1813q-107 + 7114q-106 + 11157q-105 + 10245q-104 + 1633q-103 - 9940q-102 - 22433q-101 - 27507q-100 - 16520q-99 + 6677q-98 + 37057q-97 + 58407q-96 + 52468q-95 + 18370q-94 - 40973q-93 - 100446q-92 - 122513q-91 - 89098q-90 + 7781q-89 + 133531q-88 + 223614q-87 + 228198q-86 + 109054q-85 - 106363q-84 - 325147q-83 - 443178q-82 - 356501q-81 - 55497q-80 + 349552q-79 + 689017q-78 + 753321q-77 + 439152q-76 - 173905q-75 - 857942q-74 - 1254288q-73 - 1089251q-72 - 333822q-71 + 773753q-70 + 1714946q-69 + 1964892q-68 + 1265562q-67 - 240851q-66 - 1909001q-65 - 2902350q-64 - 2597945q-63 - 884016q-62 + 1573715q-61 + 3625400q-60 + 4160778q-59 + 2617311q-58 - 502842q-57 - 3814742q-56 - 5650023q-55 - 4799031q-54 - 1364682q-53 + 3202185q-52 + 6697142q-51 + 7115131q-50 + 3902842q-49 - 1670439q-48 - 6984275q-47 - 9173314q-46 - 6807311q-45 - 696117q-44 + 6335550q-43 + 10610793q-42 + 9681809q-41 + 3632710q-40 - 4775784q-39 - 11201786q-38 - 12142587q-37 - 6760636q-36 + 2515244q-35 + 10900762q-34 + 13915945q-33 + 9700418q-32 + 121154q-31 - 9843831q-30 - 14895676q-29 - 12155512q-28 - 2782605q-27 + 8283604q-26 + 15135646q-25 + 13970837q-24 + 5181766q-23 - 6511733q-22 - 14808343q-21 - 15135897q-20 - 7142924q-19 + 4783786q-18 + 14138213q-17 + 15752305q-16 + 8612048q-15 - 3272853q-14 - 13335658q-13 - 15980950q-12 - 9641991q-11 + 2050425q-10 + 12561147q-9 + 15997522q-8 + 10346608q-7 - 1103802q-6 - 11896387q-5 - 15942378q-4 - 10871239q-3 + 344203q-2 + 11352146q-1 + 15915633 + 11352146q + 344203q2 - 10871239q3 - 15942378q4 - 11896387q5 - 1103802q6 + 10346608q7 + 15997522q8 + 12561147q9 + 2050425q10 - 9641991q11 - 15980950q12 - 13335658q13 - 3272853q14 + 8612048q15 + 15752305q16 + 14138213q17 + 4783786q18 - 7142924q19 - 15135897q20 - 14808343q21 - 6511733q22 + 5181766q23 + 13970837q24 + 15135646q25 + 8283604q26 - 2782605q27 - 12155512q28 - 14895676q29 - 9843831q30 + 121154q31 + 9700418q32 + 13915945q33 + 10900762q34 + 2515244q35 - 6760636q36 - 12142587q37 - 11201786q38 - 4775784q39 + 3632710q40 + 9681809q41 + 10610793q42 + 6335550q43 - 696117q44 - 6807311q45 - 9173314q46 - 6984275q47 - 1670439q48 + 3902842q49 + 7115131q50 + 6697142q51 + 3202185q52 - 1364682q53 - 4799031q54 - 5650023q55 - 3814742q56 - 502842q57 + 2617311q58 + 4160778q59 + 3625400q60 + 1573715q61 - 884016q62 - 2597945q63 - 2902350q64 - 1909001q65 - 240851q66 + 1265562q67 + 1964892q68 + 1714946q69 + 773753q70 - 333822q71 - 1089251q72 - 1254288q73 - 857942q74 - 173905q75 + 439152q76 + 753321q77 + 689017q78 + 349552q79 - 55497q80 - 356501q81 - 443178q82 - 325147q83 - 106363q84 + 109054q85 + 228198q86 + 223614q87 + 133531q88 + 7781q89 - 89098q90 - 122513q91 - 100446q92 - 40973q93 + 18370q94 + 52468q95 + 58407q96 + 37057q97 + 6677q98 - 16520q99 - 27507q100 - 22433q101 - 9940q102 + 1633q103 + 10245q104 + 11157q105 + 7114q106 + 1813q107 - 3310q108 - 4454q109 - 3318q110 - 1739q111 + 483q112 + 1474q113 + 1554q114 + 1078q115 - 142q116 - 518q117 - 411q118 - 385q119 - 72q120 + 35q121 + 163q122 + 242q123 - 8q124 - 69q125 - 23q126 - 27q127 + 8q128 - 24q129 - 6q130 + 43q131 - 2q132 - 14q133 - q134 + 9q136 - 6q137 - 3q138 + 4q139 - q140 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 118]] |
Out[2]= | PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[12, 19, 13, 20], > X[14, 7, 15, 8], X[8, 3, 9, 4], X[2, 16, 3, 15], X[10, 18, 11, 17], > X[16, 10, 17, 9], X[4, 11, 5, 12]] |
In[3]:= | GaussCode[Knot[10, 118]] |
Out[3]= | GaussCode[1, -7, 6, -10, 2, -1, 5, -6, 9, -8, 10, -4, 3, -5, 7, -9, 8, -2, 4, > -3] |
In[4]:= | DTCode[Knot[10, 118]] |
Out[4]= | DTCode[6, 8, 18, 14, 16, 4, 20, 2, 10, 12] |
In[5]:= | br = BR[Knot[10, 118]] |
Out[5]= | BR[3, {1, 1, -2, 1, -2, 1, -2, -2, 1, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 118]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 118]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 118]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 1, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 118]][t] |
Out[10]= | -4 5 12 19 2 3 4 23 + t - -- + -- - -- - 19 t + 12 t - 5 t + t 3 2 t t t |
In[11]:= | Conway[Knot[10, 118]][z] |
Out[11]= | 4 6 8 1 + 2 z + 3 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 118], Knot[11, Alternating, 257]} |
In[13]:= | {KnotDet[Knot[10, 118]], KnotSignature[Knot[10, 118]]} |
Out[13]= | {97, 0} |
In[14]:= | Jones[Knot[10, 118]][q] |
Out[14]= | -5 4 8 12 15 2 3 4 5 17 - q + -- - -- + -- - -- - 15 q + 12 q - 8 q + 4 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 118]} |
In[16]:= | A2Invariant[Knot[10, 118]][q] |
Out[16]= | -14 2 2 2 2 4 2 4 8 10 12 14 -3 - q + --- - --- + -- - -- + -- + 4 q - 2 q + 2 q - 2 q + 2 q - q 12 10 8 4 2 q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 118]][a, z] |
Out[17]= | 2 4 6 2 2 z 2 2 4 3 z 2 4 6 z 2 6 8 1 + 4 z - ---- - 2 a z + 8 z - ---- - 3 a z + 5 z - -- - a z + z 2 2 2 a a a |
In[18]:= | Kauffman[Knot[10, 118]][a, z] |
Out[18]= | 2 2 3 3 z 3 z 3 2 z 2 z 2 2 4 2 z 5 z 1 - -- - --- - 3 a z - a z - 6 z + -- - ---- - 2 a z + a z - -- + ---- + 3 a 4 2 5 3 a a a a a 3 4 4 15 z 3 3 3 5 3 4 6 z 6 z 2 4 > ----- + 15 a z + 5 a z - a z + 24 z - ---- + ---- + 6 a z - a 4 2 a a 5 5 5 6 4 4 z 12 z 20 z 5 3 5 5 5 6 4 z > 6 a z + -- - ----- - ----- - 20 a z - 12 a z + a z - 30 z + ---- - 5 3 a 4 a a a 6 7 7 11 z 2 6 4 6 7 z 6 z 7 3 7 8 > ----- - 11 a z + 4 a z + ---- + ---- + 6 a z + 7 a z + 14 z + 2 3 a a a 8 9 7 z 2 8 3 z 9 > ---- + 7 a z + ---- + 3 a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 118]], Vassiliev[3][Knot[10, 118]]} |
Out[19]= | {0, 0} |
In[20]:= | Kh[Knot[10, 118]][q, t] |
Out[20]= | 9 1 3 1 5 3 7 5 8 7 - + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 7 4 9 4 > 7 q t + 8 q t + 5 q t + 7 q t + 3 q t + 5 q t + q t + 3 q t + 11 5 > q t |
In[21]:= | ColouredJones[Knot[10, 118], 2][q] |
Out[21]= | -15 4 3 11 27 8 52 76 8 130 122 55 241 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - --- - -- + 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q 208 134 107 2 3 4 5 6 > --- - --- - --- - 107 q - 134 q + 208 q - 55 q - 122 q + 130 q - 3 2 q q q 7 8 9 10 11 12 13 14 15 > 8 q - 76 q + 52 q + 8 q - 27 q + 11 q + 3 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10118 |
|