© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10121Visit 10121's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10121's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X7,20,8,1 X9,19,10,18 X3,11,4,10 X17,5,18,4 X5,12,6,13 X11,16,12,17 X19,14,20,15 X13,8,14,9 X15,2,16,3 |
Gauss Code: | {-1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5, 3, -8, 2} |
DT (Dowker-Thistlethwaite) Code: | 6 10 12 20 18 16 8 2 4 14 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 11t-2 + 27t-1 - 35 + 27t - 11t2 + 2t3 |
Conway Polynomial: | 1 + z2 + z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11a41, K11a183, K11a198, K11a331, ...} |
Determinant and Signature: | {115, -2} |
Jones Polynomial: | - q-8 + 4q-7 - 9q-6 + 14q-5 - 18q-4 + 20q-3 - 18q-2 + 15q-1 - 10 + 5q - q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-24 + 2q-22 - 2q-20 - 2q-18 + 4q-16 - 3q-14 + 3q-12 - q-8 + 3q-6 - 4q-4 + 4q-2 - 1 - q2 + 3q4 - q6 |
HOMFLY-PT Polynomial: | 1 - z4 - a2 - a2z2 + a2z4 + a2z6 + 2a4 + 3a4z2 + 2a4z4 + a4z6 - a6 - a6z2 - a6z4 |
Kauffman Polynomial: | a-1z5 + 1 - 5z4 + 5z6 + 4az3 - 15az5 + 10az7 + a2 - 3a2z2 + 3a2z4 - 13a2z6 + 10a2z8 - a3z + 14a3z3 - 30a3z5 + 11a3z7 + 4a3z9 + 2a4 - 7a4z2 + 22a4z4 - 36a4z6 + 19a4z8 - 3a5z + 19a5z3 - 28a5z5 + 9a5z7 + 4a5z9 + a6 - 3a6z2 + 9a6z4 - 14a6z6 + 9a6z8 - 2a7z + 8a7z3 - 13a7z5 + 8a7z7 + a8z2 - 5a8z4 + 4a8z6 - a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10121. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 4q-22 + 4q-21 + 10q-20 - 32q-19 + 17q-18 + 59q-17 - 106q-16 + 7q-15 + 170q-14 - 186q-13 - 52q-12 + 291q-11 - 215q-10 - 129q-9 + 348q-8 - 179q-7 - 178q-6 + 312q-5 - 99q-4 - 175q-3 + 203q-2 - 20q-1 - 115 + 82q + 12q2 - 41q3 + 15q4 + 5q5 - 5q6 + q7 |
3 | - q-45 + 4q-44 - 4q-43 - 5q-42 + 8q-41 + 18q-40 - 25q-39 - 54q-38 + 60q-37 + 134q-36 - 89q-35 - 296q-34 + 72q-33 + 556q-32 + 34q-31 - 866q-30 - 297q-29 + 1184q-28 + 710q-27 - 1429q-26 - 1233q-25 + 1543q-24 + 1798q-23 - 1511q-22 - 2331q-21 + 1356q-20 + 2765q-19 - 1109q-18 - 3059q-17 + 784q-16 + 3233q-15 - 449q-14 - 3232q-13 + 64q-12 + 3110q-11 + 294q-10 - 2813q-9 - 644q-8 + 2402q-7 + 896q-6 - 1872q-5 - 1038q-4 + 1320q-3 + 1013q-2 - 788q-1 - 874 + 387q + 641q2 - 125q3 - 404q4 + 4q5 + 208q6 + 38q7 - 100q8 - 19q9 + 32q10 + 11q11 - 10q12 - 5q13 + 5q14 - q15 |
4 | q-74 - 4q-73 + 4q-72 + 5q-71 - 13q-70 + 6q-69 - 10q-68 + 36q-67 + 25q-66 - 111q-65 - 26q-64 - 6q-63 + 278q-62 + 247q-61 - 477q-60 - 528q-59 - 354q-58 + 1111q-57 + 1685q-56 - 533q-55 - 2180q-54 - 2867q-53 + 1493q-52 + 5538q-51 + 2438q-50 - 3362q-49 - 9179q-48 - 2283q-47 + 9553q-46 + 10327q-45 + 500q-44 - 16370q-43 - 12097q-42 + 8483q-41 + 19624q-40 + 11021q-39 - 18806q-38 - 23810q-37 + 813q-36 + 24646q-35 + 23705q-34 - 14982q-33 - 31723q-32 - 9405q-31 + 23876q-30 + 33219q-29 - 7995q-28 - 34142q-27 - 18052q-26 + 19437q-25 + 37954q-24 - 530q-23 - 32180q-22 - 24101q-21 + 12749q-20 + 38261q-19 + 7018q-18 - 26171q-17 - 27397q-16 + 3832q-15 + 33559q-14 + 13781q-13 - 15946q-12 - 26135q-11 - 5597q-10 + 23284q-9 + 16524q-8 - 4083q-7 - 18889q-6 - 11015q-5 + 10561q-4 + 12915q-3 + 3822q-2 - 8735q-1 - 9653 + 1523q + 5955q2 + 4894q3 - 1616q4 - 4720q5 - 1182q6 + 1127q7 + 2406q8 + 481q9 - 1236q10 - 644q11 - 173q12 + 590q13 + 289q14 - 176q15 - 97q16 - 106q17 + 82q18 + 52q19 - 25q20 - 2q21 - 16q22 + 10q23 + 5q24 - 5q25 + q26 |
5 | - q-110 + 4q-109 - 4q-108 - 5q-107 + 13q-106 - q-105 - 14q-104 - q-103 - 7q-102 + 10q-101 + 78q-100 + 32q-99 - 131q-98 - 196q-97 - 100q-96 + 230q-95 + 628q-94 + 523q-93 - 417q-92 - 1582q-91 - 1652q-90 + 140q-89 + 3074q-88 + 4482q-87 + 1710q-86 - 4710q-85 - 9673q-84 - 6938q-83 + 4466q-82 + 16938q-81 + 17892q-80 + 1065q-79 - 24141q-78 - 35432q-77 - 15987q-76 + 26168q-75 + 57614q-74 + 43794q-73 - 16583q-72 - 79185q-71 - 83915q-70 - 10429q-69 + 91411q-68 + 131709q-67 + 57493q-66 - 86326q-65 - 178297q-64 - 121321q-63 + 58443q-62 + 213473q-61 + 194245q-60 - 7919q-59 - 229518q-58 - 265676q-57 - 59569q-56 + 223155q-55 + 325835q-54 + 135017q-53 - 196351q-52 - 368727q-51 - 208778q-50 + 155175q-49 + 392638q-48 + 273351q-47 - 106875q-46 - 399728q-45 - 325057q-44 + 57800q-43 + 394335q-42 + 363719q-41 - 12099q-40 - 380646q-39 - 390960q-38 - 29850q-37 + 361491q-36 + 410235q-35 + 68646q-34 - 337731q-33 - 422549q-32 - 107164q-31 + 307561q-30 + 429225q-29 + 146528q-28 - 269102q-27 - 427285q-26 - 187091q-25 + 219600q-24 + 414167q-23 + 225845q-22 - 159267q-21 - 385285q-20 - 257884q-19 + 90509q-18 + 338995q-17 + 276333q-16 - 19871q-15 - 275665q-14 - 275896q-13 - 44019q-12 + 201274q-11 + 253523q-10 + 91957q-9 - 124190q-8 - 211957q-7 - 118030q-6 + 55648q-5 + 158188q-4 + 120534q-3 - 3736q-2 - 102435q-1 - 104297 - 26923q + 54320q2 + 77330q3 + 37974q4 - 19965q5 - 48831q6 - 34927q7 + 298q8 + 25619q9 + 25362q10 + 7132q11 - 10397q12 - 14877q13 - 7674q14 + 2485q15 + 7390q16 + 5211q17 + 293q18 - 2813q19 - 2763q20 - 872q21 + 903q22 + 1219q23 + 497q24 - 195q25 - 408q26 - 230q27 + 4q28 + 149q29 + 90q30 - 29q31 - 34q32 - 8q33 - 5q34 + 7q35 + 16q36 - 10q37 - 5q38 + 5q39 - q40 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 121]] |
Out[2]= | PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[9, 19, 10, 18], X[3, 11, 4, 10], > X[17, 5, 18, 4], X[5, 12, 6, 13], X[11, 16, 12, 17], X[19, 14, 20, 15], > X[13, 8, 14, 9], X[15, 2, 16, 3]] |
In[3]:= | GaussCode[Knot[10, 121]] |
Out[3]= | GaussCode[-1, 10, -4, 5, -6, 1, -2, 9, -3, 4, -7, 6, -9, 8, -10, 7, -5, 3, -8, > 2] |
In[4]:= | DTCode[Knot[10, 121]] |
Out[4]= | DTCode[6, 10, 12, 20, 18, 16, 8, 2, 4, 14] |
In[5]:= | br = BR[Knot[10, 121]] |
Out[5]= | BR[4, {-1, -1, -2, 3, -2, 1, -2, 3, -2, 3, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 121]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 121]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 121]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 121]][t] |
Out[10]= | 2 11 27 2 3 -35 + -- - -- + -- + 27 t - 11 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 121]][z] |
Out[11]= | 2 4 6 1 + z + z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183], > Knot[11, Alternating, 198], Knot[11, Alternating, 331]} |
In[13]:= | {KnotDet[Knot[10, 121]], KnotSignature[Knot[10, 121]]} |
Out[13]= | {115, -2} |
In[14]:= | Jones[Knot[10, 121]][q] |
Out[14]= | -8 4 9 14 18 20 18 15 2 -10 - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 121]} |
In[16]:= | A2Invariant[Knot[10, 121]][q] |
Out[16]= | -24 2 2 2 4 3 3 -8 3 4 4 2 -1 - q + --- - --- - --- + --- - --- + --- - q + -- - -- + -- - q + 22 20 18 16 14 12 6 4 2 q q q q q q q q q 4 6 > 3 q - q |
In[17]:= | HOMFLYPT[Knot[10, 121]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 4 2 4 4 4 6 4 1 - a + 2 a - a - a z + 3 a z - a z - z + a z + 2 a z - a z + 2 6 4 6 > a z + a z |
In[18]:= | Kauffman[Knot[10, 121]][a, z] |
Out[18]= | 2 4 6 3 5 7 2 2 4 2 6 2 1 + a + 2 a + a - a z - 3 a z - 2 a z - 3 a z - 7 a z - 3 a z + 8 2 3 3 3 5 3 7 3 9 3 4 2 4 > a z + 4 a z + 14 a z + 19 a z + 8 a z - a z - 5 z + 3 a z + 5 4 4 6 4 8 4 z 5 3 5 5 5 > 22 a z + 9 a z - 5 a z + -- - 15 a z - 30 a z - 28 a z - a 7 5 9 5 6 2 6 4 6 6 6 8 6 > 13 a z + a z + 5 z - 13 a z - 36 a z - 14 a z + 4 a z + 7 3 7 5 7 7 7 2 8 4 8 6 8 > 10 a z + 11 a z + 9 a z + 8 a z + 10 a z + 19 a z + 9 a z + 3 9 5 9 > 4 a z + 4 a z |
In[19]:= | {Vassiliev[2][Knot[10, 121]], Vassiliev[3][Knot[10, 121]]} |
Out[19]= | {1, -2} |
In[20]:= | Kh[Knot[10, 121]][q, t] |
Out[20]= | 7 9 1 3 1 6 3 8 6 10 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 8 10 10 8 10 4 t 2 3 2 5 3 > ----- + ----- + ----- + ---- + ---- + --- + 6 q t + q t + 4 q t + q t 7 3 7 2 5 2 5 3 q q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 121], 2][q] |
Out[21]= | -23 4 4 10 32 17 59 106 7 170 186 52 -115 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- - --- + 22 21 20 19 18 17 16 15 14 13 12 q q q q q q q q q q q 291 215 129 348 179 178 312 99 175 203 20 > --- - --- - --- + --- - --- - --- + --- - -- - --- + --- - -- + 82 q + 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 2 3 4 5 6 7 > 12 q - 41 q + 15 q + 5 q - 5 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10121 |
|