© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10115Visit 10115's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10115's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X14,6,15,5 X20,15,1,16 X16,7,17,8 X8,19,9,20 X18,11,19,12 X10,4,11,3 X4,10,5,9 X12,17,13,18 X2,14,3,13 |
Gauss Code: | {1, -10, 7, -8, 2, -1, 4, -5, 8, -7, 6, -9, 10, -2, 3, -4, 9, -6, 5, -3} |
DT (Dowker-Thistlethwaite) Code: | 6 10 14 16 4 18 2 20 12 8 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 9t-2 - 26t-1 + 37 - 26t + 9t2 - t3 |
Conway Polynomial: | 1 + z2 + 3z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {109, 0} |
Jones Polynomial: | - q-5 + 4q-4 - 9q-3 + 14q-2 - 17q-1 + 19 - 17q + 14q2 - 9q3 + 4q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 + q-14 + 2q-12 - 4q-10 + 2q-8 - q-6 - 2q-4 + 5q-2 - 1 + 5q2 - 2q4 - q6 + 2q8 - 4q10 + 2q12 + q14 - q16 |
HOMFLY-PT Polynomial: | - a-4z2 - a-2 + a-2z2 + 2a-2z4 + 3 + z2 - z4 - z6 - a2 + a2z2 + 2a2z4 - a4z2 |
Kauffman Polynomial: | - a-5z3 + a-5z5 + 2a-4z2 - 5a-4z4 + 4a-4z6 - 2a-3z + 8a-3z3 - 13a-3z5 + 8a-3z7 + a-2 - a-2z2 + a-2z4 - 9a-2z6 + 8a-2z8 - 5a-1z + 22a-1z3 - 34a-1z5 + 13a-1z7 + 3a-1z9 + 3 - 6z2 + 12z4 - 26z6 + 16z8 - 5az + 22az3 - 34az5 + 13az7 + 3az9 + a2 - a2z2 + a2z4 - 9a2z6 + 8a2z8 - 2a3z + 8a3z3 - 13a3z5 + 8a3z7 + 2a4z2 - 5a4z4 + 4a4z6 - a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10115. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 4q-14 + 4q-13 + 11q-12 - 33q-11 + 13q-10 + 64q-9 - 101q-8 - 6q-7 + 172q-6 - 166q-5 - 70q-4 + 278q-3 - 181q-2 - 142q-1 + 321 - 142q - 181q2 + 278q3 - 70q4 - 166q5 + 172q6 - 6q7 - 101q8 + 64q9 + 13q10 - 33q11 + 11q12 + 4q13 - 4q14 + q15 |
3 | - q-30 + 4q-29 - 4q-28 - 6q-27 + 8q-26 + 23q-25 - 21q-24 - 68q-23 + 41q-22 + 156q-21 - 36q-20 - 312q-19 - 34q-18 + 538q-17 + 197q-16 - 774q-15 - 501q-14 + 978q-13 + 926q-12 - 1100q-11 - 1406q-10 + 1085q-9 + 1901q-8 - 962q-7 - 2322q-6 + 733q-5 + 2658q-4 - 470q-3 - 2840q-2 + 148q-1 + 2923 + 148q - 2840q2 - 470q3 + 2658q4 + 733q5 - 2322q6 - 962q7 + 1901q8 + 1085q9 - 1406q10 - 1100q11 + 926q12 + 978q13 - 501q14 - 774q15 + 197q16 + 538q17 - 34q18 - 312q19 - 36q20 + 156q21 + 41q22 - 68q23 - 21q24 + 23q25 + 8q26 - 6q27 - 4q28 + 4q29 - q30 |
4 | q-50 - 4q-49 + 4q-48 + 6q-47 - 13q-46 + 2q-45 - 15q-44 + 40q-43 + 49q-42 - 94q-41 - 61q-40 - 89q-39 + 246q-38 + 385q-37 - 253q-36 - 518q-35 - 744q-34 + 642q-33 + 1807q-32 + 368q-31 - 1400q-30 - 3385q-29 - 217q-28 + 4490q-27 + 3818q-26 - 590q-25 - 8228q-24 - 5045q-23 + 5642q-22 + 10246q-21 + 5143q-20 - 11875q-19 - 13751q-18 + 1667q-17 + 15820q-16 + 15318q-15 - 10566q-14 - 22033q-13 - 6857q-12 + 16840q-11 + 25391q-10 - 4814q-9 - 26115q-8 - 15813q-7 + 13604q-6 + 31686q-5 + 2140q-4 - 25795q-3 - 22277q-2 + 8365q-1 + 33665 + 8365q - 22277q2 - 25795q3 + 2140q4 + 31686q5 + 13604q6 - 15813q7 - 26115q8 - 4814q9 + 25391q10 + 16840q11 - 6857q12 - 22033q13 - 10566q14 + 15318q15 + 15820q16 + 1667q17 - 13751q18 - 11875q19 + 5143q20 + 10246q21 + 5642q22 - 5045q23 - 8228q24 - 590q25 + 3818q26 + 4490q27 - 217q28 - 3385q29 - 1400q30 + 368q31 + 1807q32 + 642q33 - 744q34 - 518q35 - 253q36 + 385q37 + 246q38 - 89q39 - 61q40 - 94q41 + 49q42 + 40q43 - 15q44 + 2q45 - 13q46 + 6q47 + 4q48 - 4q49 + q50 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 115]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[20, 15, 1, 16], X[16, 7, 17, 8], > X[8, 19, 9, 20], X[18, 11, 19, 12], X[10, 4, 11, 3], X[4, 10, 5, 9], > X[12, 17, 13, 18], X[2, 14, 3, 13]] |
In[3]:= | GaussCode[Knot[10, 115]] |
Out[3]= | GaussCode[1, -10, 7, -8, 2, -1, 4, -5, 8, -7, 6, -9, 10, -2, 3, -4, 9, -6, 5, > -3] |
In[4]:= | DTCode[Knot[10, 115]] |
Out[4]= | DTCode[6, 10, 14, 16, 4, 18, 2, 20, 12, 8] |
In[5]:= | br = BR[Knot[10, 115]] |
Out[5]= | BR[5, {1, -2, 1, 3, 2, 2, -4, -3, 2, -3, -3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 115]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 115]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 115]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 115]][t] |
Out[10]= | -3 9 26 2 3 37 - t + -- - -- - 26 t + 9 t - t 2 t t |
In[11]:= | Conway[Knot[10, 115]][z] |
Out[11]= | 2 4 6 1 + z + 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 115]} |
In[13]:= | {KnotDet[Knot[10, 115]], KnotSignature[Knot[10, 115]]} |
Out[13]= | {109, 0} |
In[14]:= | Jones[Knot[10, 115]][q] |
Out[14]= | -5 4 9 14 17 2 3 4 5 19 - q + -- - -- + -- - -- - 17 q + 14 q - 9 q + 4 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 115]} |
In[16]:= | A2Invariant[Knot[10, 115]][q] |
Out[16]= | -16 -14 2 4 2 -6 2 5 2 4 6 8 -1 - q + q + --- - --- + -- - q - -- + -- + 5 q - 2 q - q + 2 q - 12 10 8 4 2 q q q q q 10 12 14 16 > 4 q + 2 q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 115]][a, z] |
Out[17]= | 2 2 4 -2 2 2 z z 2 2 4 2 4 2 z 2 4 6 3 - a - a + z - -- + -- + a z - a z - z + ---- + 2 a z - z 4 2 2 a a a |
In[18]:= | Kauffman[Knot[10, 115]][a, z] |
Out[18]= | 2 2 -2 2 2 z 5 z 3 2 2 z z 2 2 3 + a + a - --- - --- - 5 a z - 2 a z - 6 z + ---- - -- - a z + 3 a 4 2 a a a 3 3 3 4 4 2 z 8 z 22 z 3 3 3 5 3 4 5 z > 2 a z - -- + ---- + ----- + 22 a z + 8 a z - a z + 12 z - ---- + 5 3 a 4 a a a 4 5 5 5 z 2 4 4 4 z 13 z 34 z 5 3 5 5 5 > -- + a z - 5 a z + -- - ----- - ----- - 34 a z - 13 a z + a z - 2 5 3 a a a a 6 6 7 7 6 4 z 9 z 2 6 4 6 8 z 13 z 7 > 26 z + ---- - ---- - 9 a z + 4 a z + ---- + ----- + 13 a z + 4 2 3 a a a a 8 9 3 7 8 8 z 2 8 3 z 9 > 8 a z + 16 z + ---- + 8 a z + ---- + 3 a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 115]], Vassiliev[3][Knot[10, 115]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 115]][q, t] |
Out[20]= | 10 1 3 1 6 3 8 6 9 -- + 10 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t 8 3 3 2 5 2 5 3 7 3 7 4 > --- + 8 q t + 9 q t + 6 q t + 8 q t + 3 q t + 6 q t + q t + q t 9 4 11 5 > 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 115], 2][q] |
Out[21]= | -15 4 4 11 33 13 64 101 6 172 166 70 321 + q - --- + --- + --- - --- + --- + -- - --- - -- + --- - --- - -- + 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q 278 181 142 2 3 4 5 6 > --- - --- - --- - 142 q - 181 q + 278 q - 70 q - 166 q + 172 q - 3 2 q q q 7 8 9 10 11 12 13 14 15 > 6 q - 101 q + 64 q + 13 q - 33 q + 11 q + 4 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10115 |
|