© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10116Visit 10116's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10116's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X16,3,17,4 X14,7,15,8 X8,15,9,16 X10,18,11,17 X18,6,19,5 X20,13,1,14 X12,19,13,20 X2,10,3,9 X4,11,5,12 |
Gauss Code: | {1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, -6, 8, -7} |
DT (Dowker-Thistlethwaite) Code: | 6 16 18 14 2 4 20 8 10 12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-4 + 5t-3 - 12t-2 + 19t-1 - 21 + 19t - 12t2 + 5t3 - t4 |
Conway Polynomial: | 1 - 2z4 - 3z6 - z8 |
Other knots with the same Alexander/Conway Polynomial: | {K11a7, K11a33, K11a82, ...} |
Determinant and Signature: | {95, -2} |
Jones Polynomial: | q-7 - 4q-6 + 8q-5 - 12q-4 + 15q-3 - 16q-2 + 15q-1 - 11 + 8q - 4q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-20 - 2q-18 + 2q-16 - 2q-14 + 2q-10 - 3q-8 + 4q-6 - 3q-4 + 3q-2 + 1 - q2 + 2q4 - 2q6 + q8 |
HOMFLY-PT Polynomial: | 1 + 2z2 + 3z4 + z6 - 4a2z2 - 8a2z4 - 5a2z6 - a2z8 + 2a4z2 + 3a4z4 + a4z6 |
Kauffman Polynomial: | a-2z2 - 2a-2z4 + a-2z6 - a-1z + 6a-1z3 - 10a-1z5 + 4a-1z7 + 1 - z2 + 9z4 - 15z6 + 6z8 - 3az + 17az3 - 22az5 + 3az7 + 3az9 - 3a2z2 + 19a2z4 - 32a2z6 + 14a2z8 - 3a3z + 19a3z3 - 29a3z5 + 9a3z7 + 3a3z9 + a4z2 - a4z4 - 8a4z6 + 8a4z8 - a5z + 6a5z3 - 13a5z5 + 10a5z7 + 2a6z2 - 8a6z4 + 8a6z6 - 2a7z3 + 4a7z5 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10116. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 4q-19 + 4q-18 + 8q-17 - 26q-16 + 20q-15 + 30q-14 - 81q-13 + 46q-12 + 80q-11 - 155q-10 + 52q-9 + 143q-8 - 199q-7 + 27q-6 + 182q-5 - 186q-4 - 12q-3 + 176q-2 - 129q-1 - 42 + 129q - 58q2 - 47q3 + 63q4 - 10q5 - 25q6 + 15q7 + 2q8 - 4q9 + q10 |
3 | q-39 - 4q-38 + 4q-37 + 4q-36 - 6q-35 - 11q-34 + 15q-33 + 24q-32 - 43q-31 - 34q-30 + 86q-29 + 68q-28 - 168q-27 - 135q-26 + 280q-25 + 258q-24 - 403q-23 - 446q-22 + 504q-21 + 687q-20 - 553q-19 - 945q-18 + 532q-17 + 1178q-16 - 439q-15 - 1360q-14 + 305q-13 + 1457q-12 - 134q-11 - 1485q-10 - 41q-9 + 1436q-8 + 223q-7 - 1341q-6 - 376q-5 + 1172q-4 + 532q-3 - 984q-2 - 620q-1 + 732 + 681q - 492q2 - 647q3 + 248q4 + 562q5 - 63q6 - 421q7 - 59q8 + 274q9 + 100q10 - 143q11 - 92q12 + 55q13 + 63q14 - 16q15 - 28q16 + q17 + 9q18 + 2q19 - 4q20 + q21 |
4 | q-64 - 4q-63 + 4q-62 + 4q-61 - 10q-60 + 9q-59 - 16q-58 + 19q-57 + 11q-56 - 52q-55 + 55q-54 - 27q-53 + 55q-52 - 28q-51 - 232q-50 + 198q-49 + 145q-48 + 269q-47 - 269q-46 - 983q-45 + 249q-44 + 862q-43 + 1360q-42 - 448q-41 - 2941q-40 - 811q-39 + 1805q-38 + 4182q-37 + 740q-36 - 5594q-35 - 3948q-34 + 1345q-33 + 7928q-32 + 4236q-31 - 6883q-30 - 8040q-29 - 1497q-28 + 10226q-27 + 8647q-26 - 5643q-25 - 10643q-24 - 5380q-23 + 9912q-22 + 11658q-21 - 2928q-20 - 10782q-19 - 8382q-18 + 7828q-17 + 12510q-16 - 107q-15 - 9201q-14 - 10029q-13 + 4979q-12 + 11806q-11 + 2511q-10 - 6624q-9 - 10619q-8 + 1610q-7 + 9831q-6 + 4841q-5 - 3125q-4 - 9881q-3 - 1879q-2 + 6391q-1 + 5964 + 751q - 7212q2 - 4099q3 + 2117q4 + 4829q5 + 3334q6 - 3267q7 - 3791q8 - 1021q9 + 2083q10 + 3313q11 - 203q12 - 1744q13 - 1661q14 - 66q15 + 1639q16 + 662q17 - 131q18 - 786q19 - 528q20 + 343q21 + 300q22 + 215q23 - 122q24 - 216q25 + 4q26 + 24q27 + 74q28 + 8q29 - 34q30 - 2q31 - 5q32 + 9q33 + 2q34 - 4q35 + q36 |
5 | q-95 - 4q-94 + 4q-93 + 4q-92 - 10q-91 + 5q-90 + 4q-89 - 12q-88 + 6q-87 + 12q-86 - 14q-85 + 13q-84 + 24q-83 - 42q-82 - 63q-81 - 24q-80 + 75q-79 + 197q-78 + 175q-77 - 149q-76 - 599q-75 - 570q-74 + 239q-73 + 1304q-72 + 1550q-71 + 83q-70 - 2539q-69 - 3738q-68 - 1180q-67 + 4075q-66 + 7475q-65 + 4292q-64 - 5182q-63 - 13275q-62 - 10469q-61 + 4587q-60 + 20444q-59 + 20677q-58 - 299q-57 - 27565q-56 - 34970q-55 - 9270q-54 + 32318q-53 + 51857q-52 + 24779q-51 - 32134q-50 - 68728q-49 - 45362q-48 + 25518q-47 + 82476q-46 + 68371q-45 - 12476q-44 - 90423q-43 - 90533q-42 - 5289q-41 + 91499q-40 + 108768q-39 + 24914q-38 - 86308q-37 - 121029q-36 - 43529q-35 + 76515q-34 + 127042q-33 + 59151q-32 - 64564q-31 - 127652q-30 - 70720q-29 + 52038q-28 + 124391q-27 + 78788q-26 - 40095q-25 - 118820q-24 - 84100q-23 + 28669q-22 + 111762q-21 + 87985q-20 - 17383q-19 - 103446q-18 - 90914q-17 + 5243q-16 + 93558q-15 + 93116q-14 + 7789q-13 - 81195q-12 - 93607q-11 - 22045q-10 + 65983q-9 + 91612q-8 + 35814q-7 - 47681q-6 - 85286q-5 - 48142q-4 + 27311q-3 + 74484q-2 + 56169q-1 - 6675 - 58666q - 58780q2 - 11723q3 + 39932q4 + 54628q5 + 25193q6 - 20301q7 - 44778q8 - 32018q9 + 3192q10 + 31088q11 + 31894q12 + 9094q13 - 16852q14 - 26243q15 - 15096q16 + 4795q17 + 17665q18 + 15598q19 + 2976q20 - 9117q21 - 12227q22 - 6270q23 + 2554q24 + 7571q25 + 6200q26 + 999q27 - 3460q28 - 4334q29 - 2127q30 + 798q31 + 2342q32 + 1831q33 + 285q34 - 893q35 - 1050q36 - 505q37 + 160q38 + 487q39 + 334q40 + 30q41 - 147q42 - 138q43 - 68q44 + 29q45 + 67q46 + 19q47 - 10q48 - 8q49 - 8q50 - 5q51 + 9q52 + 2q53 - 4q54 + q55 |
6 | q-132 - 4q-131 + 4q-130 + 4q-129 - 10q-128 + 5q-127 + 8q-125 - 25q-124 + 7q-123 + 50q-122 - 46q-121 + 13q-120 - 2q-119 - 13q-118 - 111q-117 + 14q-116 + 271q-115 + q-114 + 73q-113 - 102q-112 - 360q-111 - 684q-110 - 62q-109 + 1223q-108 + 1022q-107 + 1034q-106 - 352q-105 - 2474q-104 - 4185q-103 - 2050q-102 + 3737q-101 + 6820q-100 + 8263q-99 + 2593q-98 - 8747q-97 - 19362q-96 - 16995q-95 + 2124q-94 + 23198q-93 + 39215q-92 + 29186q-91 - 9448q-90 - 57726q-89 - 76085q-88 - 38504q-87 + 34107q-86 + 112817q-85 + 129144q-84 + 50738q-83 - 93140q-82 - 205301q-81 - 189786q-80 - 41565q-79 + 187090q-78 + 331258q-77 + 264909q-76 - 14632q-75 - 338667q-74 - 475002q-73 - 313121q-72 + 119496q-71 + 536866q-70 + 638692q-69 + 294233q-68 - 303221q-67 - 756111q-66 - 756425q-65 - 202630q-64 + 548003q-63 + 992144q-62 + 772158q-61 - 50q-60 - 819959q-59 - 1155290q-58 - 680215q-57 + 287898q-56 + 1109630q-55 + 1180554q-54 + 440482q-53 - 617229q-52 - 1307243q-51 - 1070398q-50 - 92361q-49 + 971098q-48 + 1345149q-47 + 789264q-46 - 307772q-45 - 1221615q-44 - 1236819q-43 - 390898q-42 + 734163q-41 + 1301981q-40 + 951368q-39 - 58709q-38 - 1046663q-37 - 1236161q-36 - 551677q-35 + 529585q-34 + 1185314q-33 + 996800q-32 + 106366q-31 - 879991q-30 - 1185242q-29 - 650722q-28 + 356307q-27 + 1063599q-26 + 1022958q-25 + 263526q-24 - 702379q-23 - 1125649q-22 - 764887q-21 + 141376q-20 + 901461q-19 + 1045038q-18 + 469179q-17 - 443143q-16 - 1003598q-15 - 882116q-14 - 152922q-13 + 625443q-12 + 986413q-11 + 683430q-10 - 79473q-9 - 736858q-8 - 899048q-7 - 458883q-6 + 223348q-5 + 751954q-4 + 774867q-3 + 294204q-2 - 322429q-1 - 707778 - 617876q - 184699q2 + 349841q3 + 627460q4 + 496027q5 + 93427q6 - 333339q7 - 513072q8 - 399680q9 - 47292q10 + 289815q11 + 418383q12 + 301992q13 + 26480q14 - 221638q15 - 333551q16 - 230694q17 - 20203q18 + 169572q19 + 243138q20 + 174222q21 + 28148q22 - 123546q23 - 173776q24 - 128643q25 - 24126q26 + 75089q27 + 118620q28 + 96454q29 + 20145q30 - 44054q31 - 76490q32 - 63064q33 - 21686q34 + 23245q35 + 48612q36 + 38980q37 + 16692q38 - 10630q39 - 25415q40 - 25362q41 - 11611q42 + 5075q43 + 12290q44 + 13764q45 + 7162q46 - 460q47 - 6627q48 - 6886q49 - 3424q50 - 522q51 + 2596q52 + 3033q53 + 2170q54 + 9q55 - 987q56 - 1006q57 - 927q58 - 144q59 + 297q60 + 540q61 + 188q62 + 28q63 - 34q64 - 162q65 - 81q66 - 19q67 + 72q68 + 12q69 + q70 + 16q71 - 14q72 - 8q73 - 5q74 + 9q75 + 2q76 - 4q77 + q78 |
7 | q-175 - 4q-174 + 4q-173 + 4q-172 - 10q-171 + 5q-170 + 4q-168 - 5q-167 - 24q-166 + 45q-165 + 18q-164 - 46q-163 - 3q-162 - 24q-161 + 10q-160 - 9q-159 - 46q-158 + 217q-157 + 142q-156 - 128q-155 - 178q-154 - 377q-153 - 160q-152 + 57q-151 + 264q-150 + 1178q-149 + 1004q-148 - 110q-147 - 1317q-146 - 2880q-145 - 2372q-144 - 342q-143 + 2599q-142 + 6857q-141 + 7231q-140 + 2703q-139 - 5541q-138 - 15802q-137 - 18275q-136 - 9964q-135 + 8031q-134 + 31897q-133 + 43440q-132 + 32043q-131 - 4964q-130 - 58733q-129 - 94081q-128 - 84181q-127 - 18052q-126 + 90431q-125 + 181237q-124 + 195147q-123 + 94482q-122 - 108131q-121 - 312094q-120 - 397793q-119 - 273890q-118 + 62828q-117 + 464786q-116 + 718788q-115 + 627756q-114 + 130472q-113 - 580276q-112 - 1153869q-111 - 1217100q-110 - 583518q-109 + 539213q-108 + 1634346q-107 + 2065397q-106 + 1411284q-105 - 178950q-104 - 2017173q-103 - 3113040q-102 - 2673341q-101 - 667941q-100 + 2089008q-99 + 4192792q-98 + 4328336q-97 + 2112926q-96 - 1624008q-95 - 5051850q-94 - 6200227q-93 - 4138335q-92 + 459641q-91 + 5404833q-90 + 7997555q-89 + 6572543q-88 + 1430079q-87 - 5030815q-86 - 9388717q-85 - 9107156q-84 - 3892291q-83 + 3853496q-82 + 10093465q-81 + 11374372q-80 + 6628537q-79 - 1977404q-78 - 9977978q-77 - 13056008q-76 - 9267914q-75 - 331461q-74 + 9089906q-73 + 13965385q-72 + 11473738q-71 + 2731817q-70 - 7635703q-69 - 14093722q-68 - 13033080q-67 - 4900343q-66 + 5911388q-65 + 13587239q-64 + 13889997q-63 + 6614112q-62 - 4204675q-61 - 12681350q-60 - 14137150q-59 - 7793083q-58 + 2728723q-57 + 11626559q-56 + 13955752q-55 + 8482179q-54 - 1581260q-53 - 10613901q-52 - 13551342q-51 - 8817560q-50 + 748305q-49 + 9750846q-48 + 13098623q-47 + 8964002q-46 - 138945q-45 - 9050877q-44 - 12704262q-43 - 9074976q-42 - 379459q-41 + 8457565q-40 + 12405864q-39 + 9258553q-38 + 937575q-37 - 7870129q-36 - 12173638q-35 - 9565849q-34 - 1642486q-33 + 7172709q-32 + 11928935q-31 + 9987193q-30 + 2558510q-29 - 6254716q-28 - 11562618q-27 - 10458859q-26 - 3692443q-25 + 5035675q-24 + 10947851q-23 + 10863732q-22 + 4993754q-21 - 3476329q-20 - 9971490q-19 - 11055527q-18 - 6340984q-17 + 1610856q-16 + 8550235q-15 + 10866184q-14 + 7560095q-13 + 457160q-12 - 6671885q-11 - 10161317q-10 - 8438363q-9 - 2531357q-8 + 4415087q-7 + 8859134q-6 + 8770447q-5 + 4368608q-4 - 1962291q-3 - 6996260q-2 - 8413324q-1 - 5700197 - 414462q + 4724899q2 + 7335380q3 + 6319177q4 + 2410339q5 - 2320647q6 - 5656063q7 - 6129725q8 - 3754692q9 + 115205q10 + 3630757q11 + 5201831q12 + 4295576q13 + 1577925q14 - 1601328q15 - 3761567q16 - 4048701q17 - 2556796q18 - 94472q19 + 2139708q20 + 3199093q21 + 2785688q22 + 1219794q23 - 674546q24 - 2047942q25 - 2405172q26 - 1699282q27 - 379123q28 + 916490q29 + 1670699q30 + 1625024q31 + 922337q32 - 49172q33 - 869708q34 - 1207684q35 - 1007750q36 - 440031q37 + 222203q38 + 682179q39 + 796327q40 + 581175q41 + 165868q42 - 237719q43 - 475811q44 - 488677q45 - 302773q46 - 38424q47 + 189710q48 + 304034q49 + 273463q50 + 146476q51 - 10319q52 - 132631q53 - 173979q54 - 142103q55 - 64103q56 + 22968q57 + 78711q58 + 92746q59 + 68514q60 + 22324q61 - 18261q62 - 42440q63 - 44958q64 - 28685q65 - 7272q66 + 11831q67 + 21313q68 + 18808q69 + 10906q70 + 1164q71 - 6386q72 - 8625q73 - 7603q74 - 3595q75 + 771q76 + 2759q77 + 3310q78 + 2326q79 + 772q80 - 299q81 - 1177q82 - 1187q83 - 501q84 - 69q85 + 277q86 + 317q87 + 203q88 + 180q89 - 35q90 - 140q91 - 81q92 - 32q93 + 24q94 + 17q95 - 6q96 + 27q97 + 10q98 - 14q99 - 8q100 - 5q101 + 9q102 + 2q103 - 4q104 + q105 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 116]] |
Out[2]= | PD[X[6, 2, 7, 1], X[16, 3, 17, 4], X[14, 7, 15, 8], X[8, 15, 9, 16], > X[10, 18, 11, 17], X[18, 6, 19, 5], X[20, 13, 1, 14], X[12, 19, 13, 20], > X[2, 10, 3, 9], X[4, 11, 5, 12]] |
In[3]:= | GaussCode[Knot[10, 116]] |
Out[3]= | GaussCode[1, -9, 2, -10, 6, -1, 3, -4, 9, -5, 10, -8, 7, -3, 4, -2, 5, -6, 8, > -7] |
In[4]:= | DTCode[Knot[10, 116]] |
Out[4]= | DTCode[6, 16, 18, 14, 2, 4, 20, 8, 10, 12] |
In[5]:= | br = BR[Knot[10, 116]] |
Out[5]= | BR[3, {-1, -1, 2, -1, -1, 2, -1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 116]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 116]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 116]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 116]][t] |
Out[10]= | -4 5 12 19 2 3 4 -21 - t + -- - -- + -- + 19 t - 12 t + 5 t - t 3 2 t t t |
In[11]:= | Conway[Knot[10, 116]][z] |
Out[11]= | 4 6 8 1 - 2 z - 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 116], Knot[11, Alternating, 7], Knot[11, Alternating, 33], > Knot[11, Alternating, 82]} |
In[13]:= | {KnotDet[Knot[10, 116]], KnotSignature[Knot[10, 116]]} |
Out[13]= | {95, -2} |
In[14]:= | Jones[Knot[10, 116]][q] |
Out[14]= | -7 4 8 12 15 16 15 2 3 -11 + q - -- + -- - -- + -- - -- + -- + 8 q - 4 q + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 116]} |
In[16]:= | A2Invariant[Knot[10, 116]][q] |
Out[16]= | -20 2 2 2 2 3 4 3 3 2 4 6 8 1 + q - --- + --- - --- + --- - -- + -- - -- + -- - q + 2 q - 2 q + q 18 16 14 10 8 6 4 2 q q q q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 116]][a, z] |
Out[17]= | 2 2 2 4 2 4 2 4 4 4 6 2 6 1 + 2 z - 4 a z + 2 a z + 3 z - 8 a z + 3 a z + z - 5 a z + 4 6 2 8 > a z - a z |
In[18]:= | Kauffman[Knot[10, 116]][a, z] |
Out[18]= | 2 3 z 3 5 2 z 2 2 4 2 6 2 6 z 1 - - - 3 a z - 3 a z - a z - z + -- - 3 a z + a z + 2 a z + ---- + a 2 a a 4 3 3 3 5 3 7 3 4 2 z 2 4 4 4 > 17 a z + 19 a z + 6 a z - 2 a z + 9 z - ---- + 19 a z - a z - 2 a 5 6 4 8 4 10 z 5 3 5 5 5 7 5 6 > 8 a z + a z - ----- - 22 a z - 29 a z - 13 a z + 4 a z - 15 z + a 6 7 z 2 6 4 6 6 6 4 z 7 3 7 5 7 > -- - 32 a z - 8 a z + 8 a z + ---- + 3 a z + 9 a z + 10 a z + 2 a a 8 2 8 4 8 9 3 9 > 6 z + 14 a z + 8 a z + 3 a z + 3 a z |
In[19]:= | {Vassiliev[2][Knot[10, 116]], Vassiliev[3][Knot[10, 116]]} |
Out[19]= | {0, 0} |
In[20]:= | Kh[Knot[10, 116]][q, t] |
Out[20]= | 7 9 1 3 1 5 3 7 5 8 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 7 8 8 5 t 2 3 2 3 3 5 3 > ----- + ---- + ---- + --- + 6 q t + 3 q t + 5 q t + q t + 3 q t + 5 2 5 3 q q t q t q t 7 4 > q t |
In[21]:= | ColouredJones[Knot[10, 116], 2][q] |
Out[21]= | -20 4 4 8 26 20 30 81 46 80 155 52 -42 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + -- + 19 18 17 16 15 14 13 12 11 10 9 q q q q q q q q q q q 143 199 27 182 186 12 176 129 2 3 > --- - --- + -- + --- - --- - -- + --- - --- + 129 q - 58 q - 47 q + 8 7 6 5 4 3 2 q q q q q q q q 4 5 6 7 8 9 10 > 63 q - 10 q - 25 q + 15 q + 2 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10116 |
|