© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10114Visit 10114's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10114's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X8394 X18,13,19,14 X20,11,1,12 X12,19,13,20 X2,16,3,15 X4,17,5,18 X10,6,11,5 X14,7,15,8 X16,10,17,9 |
Gauss Code: | {1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, -3, 5, -4} |
DT (Dowker-Thistlethwaite) Code: | 6 8 10 14 16 20 18 2 4 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 10t-2 - 21t-1 + 27 - 21t + 10t2 - 2t3 |
Conway Polynomial: | 1 + z2 - 2z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11a93, ...} |
Determinant and Signature: | {93, 0} |
Jones Polynomial: | q-6 - 4q-5 + 7q-4 - 11q-3 + 15q-2 - 15q-1 + 15 - 12q + 8q2 - 4q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-18 - 2q-16 - 3q-10 + 4q-8 + 2q-4 + 2q-2 - 2 + 3q2 - 3q4 + q6 + q8 - 2q10 + q12 |
HOMFLY-PT Polynomial: | a-2z2 + a-2z4 - z2 - 2z4 - z6 + 2a2 - 2a2z4 - a2z6 - a4 + a4z2 + a4z4 |
Kauffman Polynomial: | a-4z4 - 2a-3z3 + 4a-3z5 + 2a-2z2 - 8a-2z4 + 8a-2z6 - a-1z + 5a-1z3 - 13a-1z5 + 10a-1z7 + z4 - 9z6 + 8z8 - 3az + 18az3 - 27az5 + 8az7 + 3az9 - 2a2 - 5a2z2 + 26a2z4 - 35a2z6 + 14a2z8 - 2a3z + 18a3z3 - 21a3z5 + 2a3z7 + 3a3z9 - a4 - 3a4z2 + 14a4z4 - 17a4z6 + 6a4z8 + 7a5z3 - 11a5z5 + 4a5z7 - 2a6z4 + a6z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10114. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-18 - 4q-17 + 2q-16 + 14q-15 - 24q-14 - 7q-13 + 58q-12 - 47q-11 - 50q-10 + 121q-9 - 47q-8 - 117q-7 + 170q-6 - 20q-5 - 173q-4 + 179q-3 + 18q-2 - 188q-1 + 144 + 44q - 150q2 + 82q3 + 42q4 - 81q5 + 31q6 + 20q7 - 26q8 + 8q9 + 4q10 - 4q11 + q12 |
3 | q-36 - 4q-35 + 2q-34 + 9q-33 - 27q-31 - 12q-30 + 62q-29 + 43q-28 - 95q-27 - 122q-26 + 120q-25 + 237q-24 - 93q-23 - 388q-22 + 9q-21 + 524q-20 + 158q-19 - 637q-18 - 363q-17 + 679q-16 + 600q-15 - 659q-14 - 837q-13 + 594q-12 + 1027q-11 - 463q-10 - 1208q-9 + 337q-8 + 1309q-7 - 162q-6 - 1388q-5 + 15q-4 + 1368q-3 + 167q-2 - 1309q-1 - 296 + 1147q + 412q2 - 946q3 - 453q4 + 701q5 + 437q6 - 469q7 - 365q8 + 281q9 + 262q10 - 151q11 - 162q12 + 76q13 + 86q14 - 37q15 - 44q16 + 25q17 + 15q18 - 11q19 - 6q20 + 4q21 + 4q22 - 4q23 + q24 |
4 | q-60 - 4q-59 + 2q-58 + 9q-57 - 5q-56 - 3q-55 - 33q-54 + 12q-53 + 74q-52 + 16q-51 - 12q-50 - 209q-49 - 84q-48 + 248q-47 + 275q-46 + 230q-45 - 586q-44 - 686q-43 + 83q-42 + 757q-41 + 1365q-40 - 416q-39 - 1696q-38 - 1278q-37 + 346q-36 + 3137q-35 + 1349q-34 - 1602q-33 - 3397q-32 - 2150q-31 + 3720q-30 + 4074q-29 + 864q-28 - 4273q-27 - 5907q-26 + 1853q-25 + 5699q-24 + 4794q-23 - 2794q-22 - 8871q-21 - 1562q-20 + 5263q-19 + 8295q-18 + 133q-17 - 10112q-16 - 4917q-15 + 3532q-14 + 10543q-13 + 3156q-12 - 10036q-11 - 7529q-10 + 1385q-9 + 11623q-8 + 5828q-7 - 8912q-6 - 9327q-5 - 1105q-4 + 11304q-3 + 8019q-2 - 6410q-1 - 9709 - 3804q + 8925q2 + 8870q3 - 2743q4 - 7825q5 - 5521q6 + 4897q7 + 7366q8 + 395q9 - 4227q10 - 4984q11 + 1296q12 + 4180q13 + 1405q14 - 1111q15 - 2840q16 - 229q17 + 1465q18 + 803q19 + 139q20 - 1004q21 - 242q22 + 303q23 + 155q24 + 184q25 - 239q26 - 30q27 + 58q28 - 25q29 + 54q30 - 52q31 + 11q32 + 19q33 - 16q34 + 9q35 - 10q36 + 4q37 + 4q38 - 4q39 + q40 |
5 | q-90 - 4q-89 + 2q-88 + 9q-87 - 5q-86 - 8q-85 - 9q-84 - 9q-83 + 23q-82 + 67q-81 + 22q-80 - 80q-79 - 144q-78 - 124q-77 + 78q-76 + 366q-75 + 438q-74 + 25q-73 - 639q-72 - 1010q-71 - 600q-70 + 674q-69 + 1959q-68 + 1889q-67 - 76q-66 - 2730q-65 - 3928q-64 - 1991q-63 + 2581q-62 + 6372q-61 + 5600q-60 - 384q-59 - 7781q-58 - 10497q-57 - 4692q-56 + 6743q-55 + 15061q-54 + 12367q-53 - 1599q-52 - 17244q-51 - 21262q-50 - 7856q-49 + 14745q-48 + 28908q-47 + 20774q-46 - 6610q-45 - 32603q-44 - 34561q-43 - 7141q-42 + 30397q-41 + 46683q-40 + 24422q-39 - 21831q-38 - 54326q-37 - 42787q-36 + 7696q-35 + 56447q-34 + 59629q-33 + 9722q-32 - 53030q-31 - 72840q-30 - 28292q-29 + 45115q-28 + 82137q-27 + 45796q-26 - 34862q-25 - 87225q-24 - 61069q-23 + 23379q-22 + 89682q-21 + 73812q-20 - 12620q-19 - 89921q-18 - 84237q-17 + 2241q-16 + 89436q-15 + 93094q-14 + 7185q-13 - 87747q-12 - 100836q-11 - 17118q-10 + 85150q-9 + 107579q-8 + 27453q-7 - 79863q-6 - 112765q-5 - 39254q-4 + 71610q-3 + 115139q-2 + 51245q-1 - 58967 - 113105q - 62759q2 + 42813q3 + 105530q4 + 71094q5 - 24148q6 - 91983q7 - 74673q8 + 5716q9 + 73678q10 + 72019q11 + 9792q12 - 52999q13 - 63424q14 - 20091q15 + 32984q16 + 50614q17 + 24395q18 - 16501q19 - 36246q20 - 23319q21 + 5034q22 + 22958q23 + 18846q24 + 1323q25 - 12644q26 - 13168q27 - 3588q28 + 5819q29 + 7938q30 + 3533q31 - 2019q32 - 4230q33 - 2480q34 + 430q35 + 1861q36 + 1397q37 + 142q38 - 717q39 - 681q40 - 139q41 + 221q42 + 235q43 + 88q44 - 35q45 - 76q46 - 47q47 + 25q48 + 14q49 - 12q50 + 13q51 + 5q52 - 12q53 + 4q54 + 5q55 - 10q56 + 4q57 + 4q58 - 4q59 + q60 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 114]] |
Out[2]= | PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[18, 13, 19, 14], X[20, 11, 1, 12], > X[12, 19, 13, 20], X[2, 16, 3, 15], X[4, 17, 5, 18], X[10, 6, 11, 5], > X[14, 7, 15, 8], X[16, 10, 17, 9]] |
In[3]:= | GaussCode[Knot[10, 114]] |
Out[3]= | GaussCode[1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, -3, 5, > -4] |
In[4]:= | DTCode[Knot[10, 114]] |
Out[4]= | DTCode[6, 8, 10, 14, 16, 20, 18, 2, 4, 12] |
In[5]:= | br = BR[Knot[10, 114]] |
Out[5]= | BR[4, {-1, -1, -2, 1, 3, -2, 3, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 114]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 114]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 114]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 114]][t] |
Out[10]= | 2 10 21 2 3 27 - -- + -- - -- - 21 t + 10 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 114]][z] |
Out[11]= | 2 4 6 1 + z - 2 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 114], Knot[11, Alternating, 93]} |
In[13]:= | {KnotDet[Knot[10, 114]], KnotSignature[Knot[10, 114]]} |
Out[13]= | {93, 0} |
In[14]:= | Jones[Knot[10, 114]][q] |
Out[14]= | -6 4 7 11 15 15 2 3 4 15 + q - -- + -- - -- + -- - -- - 12 q + 8 q - 4 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 114]} |
In[16]:= | A2Invariant[Knot[10, 114]][q] |
Out[16]= | -18 2 3 4 2 2 2 4 6 8 10 12 -2 + q - --- - --- + -- + -- + -- + 3 q - 3 q + q + q - 2 q + q 16 10 8 4 2 q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 114]][a, z] |
Out[17]= | 2 4 2 4 2 z 4 2 4 z 2 4 4 4 6 2 6 2 a - a - z + -- + a z - 2 z + -- - 2 a z + a z - z - a z 2 2 a a |
In[18]:= | Kauffman[Knot[10, 114]][a, z] |
Out[18]= | 2 3 3 2 4 z 3 2 z 2 2 4 2 2 z 5 z -2 a - a - - - 3 a z - 2 a z + ---- - 5 a z - 3 a z - ---- + ---- + a 2 3 a a a 4 4 3 3 3 5 3 4 z 8 z 2 4 4 4 > 18 a z + 18 a z + 7 a z + z + -- - ---- + 26 a z + 14 a z - 4 2 a a 5 5 6 6 4 4 z 13 z 5 3 5 5 5 6 8 z > 2 a z + ---- - ----- - 27 a z - 21 a z - 11 a z - 9 z + ---- - 3 a 2 a a 7 2 6 4 6 6 6 10 z 7 3 7 5 7 8 > 35 a z - 17 a z + a z + ----- + 8 a z + 2 a z + 4 a z + 8 z + a 2 8 4 8 9 3 9 > 14 a z + 6 a z + 3 a z + 3 a z |
In[19]:= | {Vassiliev[2][Knot[10, 114]], Vassiliev[3][Knot[10, 114]]} |
Out[19]= | {1, -1} |
In[20]:= | Kh[Knot[10, 114]][q, t] |
Out[20]= | 8 1 3 1 4 3 7 4 8 - + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 5 2 q t q t q t q t q t q t q t q t 7 7 8 3 3 2 5 2 5 3 7 3 > ----- + ---- + --- + 5 q t + 7 q t + 3 q t + 5 q t + q t + 3 q t + 3 2 3 q t q t q t 9 4 > q t |
In[21]:= | ColouredJones[Knot[10, 114], 2][q] |
Out[21]= | -18 4 2 14 24 7 58 47 50 121 47 117 144 + q - --- + --- + --- - --- - --- + --- - --- - --- + --- - -- - --- + 17 16 15 14 13 12 11 10 9 8 7 q q q q q q q q q q q 170 20 173 179 18 188 2 3 4 5 > --- - -- - --- + --- + -- - --- + 44 q - 150 q + 82 q + 42 q - 81 q + 6 5 4 3 2 q q q q q q 6 7 8 9 10 11 12 > 31 q + 20 q - 26 q + 8 q + 4 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10114 |
|