© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.113
10113
10.115
10115
    10.114
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 10114   

Visit 10114's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10114's page at Knotilus!

Acknowledgement

10.114
KnotPlot

PD Presentation: X6271 X8394 X18,13,19,14 X20,11,1,12 X12,19,13,20 X2,16,3,15 X4,17,5,18 X10,6,11,5 X14,7,15,8 X16,10,17,9

Gauss Code: {1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, -3, 5, -4}

DT (Dowker-Thistlethwaite) Code: 6 8 10 14 16 20 18 2 4 12

Minimum Braid Representative:


Length is 11, width is 4
Braid index is 4

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 1 3 3 / NotAvailable 1

Alexander Polynomial: - 2t-3 + 10t-2 - 21t-1 + 27 - 21t + 10t2 - 2t3

Conway Polynomial: 1 + z2 - 2z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a93, ...}

Determinant and Signature: {93, 0}

Jones Polynomial: q-6 - 4q-5 + 7q-4 - 11q-3 + 15q-2 - 15q-1 + 15 - 12q + 8q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-18 - 2q-16 - 3q-10 + 4q-8 + 2q-4 + 2q-2 - 2 + 3q2 - 3q4 + q6 + q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2z2 + a-2z4 - z2 - 2z4 - z6 + 2a2 - 2a2z4 - a2z6 - a4 + a4z2 + a4z4

Kauffman Polynomial: a-4z4 - 2a-3z3 + 4a-3z5 + 2a-2z2 - 8a-2z4 + 8a-2z6 - a-1z + 5a-1z3 - 13a-1z5 + 10a-1z7 + z4 - 9z6 + 8z8 - 3az + 18az3 - 27az5 + 8az7 + 3az9 - 2a2 - 5a2z2 + 26a2z4 - 35a2z6 + 14a2z8 - 2a3z + 18a3z3 - 21a3z5 + 2a3z7 + 3a3z9 - a4 - 3a4z2 + 14a4z4 - 17a4z6 + 6a4z8 + 7a5z3 - 11a5z5 + 4a5z7 - 2a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10114. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9          1
j = 7         3 
j = 5        51 
j = 3       73  
j = 1      85   
j = -1     88    
j = -3    77     
j = -5   48      
j = -7  37       
j = -9 14        
j = -11 3         
j = -131          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-18 - 4q-17 + 2q-16 + 14q-15 - 24q-14 - 7q-13 + 58q-12 - 47q-11 - 50q-10 + 121q-9 - 47q-8 - 117q-7 + 170q-6 - 20q-5 - 173q-4 + 179q-3 + 18q-2 - 188q-1 + 144 + 44q - 150q2 + 82q3 + 42q4 - 81q5 + 31q6 + 20q7 - 26q8 + 8q9 + 4q10 - 4q11 + q12
3 q-36 - 4q-35 + 2q-34 + 9q-33 - 27q-31 - 12q-30 + 62q-29 + 43q-28 - 95q-27 - 122q-26 + 120q-25 + 237q-24 - 93q-23 - 388q-22 + 9q-21 + 524q-20 + 158q-19 - 637q-18 - 363q-17 + 679q-16 + 600q-15 - 659q-14 - 837q-13 + 594q-12 + 1027q-11 - 463q-10 - 1208q-9 + 337q-8 + 1309q-7 - 162q-6 - 1388q-5 + 15q-4 + 1368q-3 + 167q-2 - 1309q-1 - 296 + 1147q + 412q2 - 946q3 - 453q4 + 701q5 + 437q6 - 469q7 - 365q8 + 281q9 + 262q10 - 151q11 - 162q12 + 76q13 + 86q14 - 37q15 - 44q16 + 25q17 + 15q18 - 11q19 - 6q20 + 4q21 + 4q22 - 4q23 + q24
4 q-60 - 4q-59 + 2q-58 + 9q-57 - 5q-56 - 3q-55 - 33q-54 + 12q-53 + 74q-52 + 16q-51 - 12q-50 - 209q-49 - 84q-48 + 248q-47 + 275q-46 + 230q-45 - 586q-44 - 686q-43 + 83q-42 + 757q-41 + 1365q-40 - 416q-39 - 1696q-38 - 1278q-37 + 346q-36 + 3137q-35 + 1349q-34 - 1602q-33 - 3397q-32 - 2150q-31 + 3720q-30 + 4074q-29 + 864q-28 - 4273q-27 - 5907q-26 + 1853q-25 + 5699q-24 + 4794q-23 - 2794q-22 - 8871q-21 - 1562q-20 + 5263q-19 + 8295q-18 + 133q-17 - 10112q-16 - 4917q-15 + 3532q-14 + 10543q-13 + 3156q-12 - 10036q-11 - 7529q-10 + 1385q-9 + 11623q-8 + 5828q-7 - 8912q-6 - 9327q-5 - 1105q-4 + 11304q-3 + 8019q-2 - 6410q-1 - 9709 - 3804q + 8925q2 + 8870q3 - 2743q4 - 7825q5 - 5521q6 + 4897q7 + 7366q8 + 395q9 - 4227q10 - 4984q11 + 1296q12 + 4180q13 + 1405q14 - 1111q15 - 2840q16 - 229q17 + 1465q18 + 803q19 + 139q20 - 1004q21 - 242q22 + 303q23 + 155q24 + 184q25 - 239q26 - 30q27 + 58q28 - 25q29 + 54q30 - 52q31 + 11q32 + 19q33 - 16q34 + 9q35 - 10q36 + 4q37 + 4q38 - 4q39 + q40
5 q-90 - 4q-89 + 2q-88 + 9q-87 - 5q-86 - 8q-85 - 9q-84 - 9q-83 + 23q-82 + 67q-81 + 22q-80 - 80q-79 - 144q-78 - 124q-77 + 78q-76 + 366q-75 + 438q-74 + 25q-73 - 639q-72 - 1010q-71 - 600q-70 + 674q-69 + 1959q-68 + 1889q-67 - 76q-66 - 2730q-65 - 3928q-64 - 1991q-63 + 2581q-62 + 6372q-61 + 5600q-60 - 384q-59 - 7781q-58 - 10497q-57 - 4692q-56 + 6743q-55 + 15061q-54 + 12367q-53 - 1599q-52 - 17244q-51 - 21262q-50 - 7856q-49 + 14745q-48 + 28908q-47 + 20774q-46 - 6610q-45 - 32603q-44 - 34561q-43 - 7141q-42 + 30397q-41 + 46683q-40 + 24422q-39 - 21831q-38 - 54326q-37 - 42787q-36 + 7696q-35 + 56447q-34 + 59629q-33 + 9722q-32 - 53030q-31 - 72840q-30 - 28292q-29 + 45115q-28 + 82137q-27 + 45796q-26 - 34862q-25 - 87225q-24 - 61069q-23 + 23379q-22 + 89682q-21 + 73812q-20 - 12620q-19 - 89921q-18 - 84237q-17 + 2241q-16 + 89436q-15 + 93094q-14 + 7185q-13 - 87747q-12 - 100836q-11 - 17118q-10 + 85150q-9 + 107579q-8 + 27453q-7 - 79863q-6 - 112765q-5 - 39254q-4 + 71610q-3 + 115139q-2 + 51245q-1 - 58967 - 113105q - 62759q2 + 42813q3 + 105530q4 + 71094q5 - 24148q6 - 91983q7 - 74673q8 + 5716q9 + 73678q10 + 72019q11 + 9792q12 - 52999q13 - 63424q14 - 20091q15 + 32984q16 + 50614q17 + 24395q18 - 16501q19 - 36246q20 - 23319q21 + 5034q22 + 22958q23 + 18846q24 + 1323q25 - 12644q26 - 13168q27 - 3588q28 + 5819q29 + 7938q30 + 3533q31 - 2019q32 - 4230q33 - 2480q34 + 430q35 + 1861q36 + 1397q37 + 142q38 - 717q39 - 681q40 - 139q41 + 221q42 + 235q43 + 88q44 - 35q45 - 76q46 - 47q47 + 25q48 + 14q49 - 12q50 + 13q51 + 5q52 - 12q53 + 4q54 + 5q55 - 10q56 + 4q57 + 4q58 - 4q59 + q60


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 114]]
Out[2]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[18, 13, 19, 14], X[20, 11, 1, 12], 
 
>   X[12, 19, 13, 20], X[2, 16, 3, 15], X[4, 17, 5, 18], X[10, 6, 11, 5], 
 
>   X[14, 7, 15, 8], X[16, 10, 17, 9]]
In[3]:=
GaussCode[Knot[10, 114]]
Out[3]=   
GaussCode[1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, -3, 5, 
 
>   -4]
In[4]:=
DTCode[Knot[10, 114]]
Out[4]=   
DTCode[6, 8, 10, 14, 16, 20, 18, 2, 4, 12]
In[5]:=
br = BR[Knot[10, 114]]
Out[5]=   
BR[4, {-1, -1, -2, 1, 3, -2, 3, -2, 3, -2, 3}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{4, 11}
In[7]:=
BraidIndex[Knot[10, 114]]
Out[7]=   
4
In[8]:=
Show[DrawMorseLink[Knot[10, 114]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 114]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 1, 3, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 114]][t]
Out[10]=   
     2    10   21              2      3
27 - -- + -- - -- - 21 t + 10 t  - 2 t
      3    2   t
     t    t
In[11]:=
Conway[Knot[10, 114]][z]
Out[11]=   
     2      4      6
1 + z  - 2 z  - 2 z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 114], Knot[11, Alternating, 93]}
In[13]:=
{KnotDet[Knot[10, 114]], KnotSignature[Knot[10, 114]]}
Out[13]=   
{93, 0}
In[14]:=
Jones[Knot[10, 114]][q]
Out[14]=   
      -6   4    7    11   15   15             2      3    4
15 + q   - -- + -- - -- + -- - -- - 12 q + 8 q  - 4 q  + q
            5    4    3    2   q
           q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 114]}
In[16]:=
A2Invariant[Knot[10, 114]][q]
Out[16]=   
      -18    2     3    4    2    2       2      4    6    8      10    12
-2 + q    - --- - --- + -- + -- + -- + 3 q  - 3 q  + q  + q  - 2 q   + q
             16    10    8    4    2
            q     q     q    q    q
In[17]:=
HOMFLYPT[Knot[10, 114]][a, z]
Out[17]=   
                  2                   4
   2    4    2   z     4  2      4   z       2  4    4  4    6    2  6
2 a  - a  - z  + -- + a  z  - 2 z  + -- - 2 a  z  + a  z  - z  - a  z
                  2                   2
                 a                   a
In[18]:=
Kauffman[Knot[10, 114]][a, z]
Out[18]=   
                                     2                          3      3
    2    4   z              3     2 z       2  2      4  2   2 z    5 z
-2 a  - a  - - - 3 a z - 2 a  z + ---- - 5 a  z  - 3 a  z  - ---- + ---- + 
             a                      2                          3     a
                                   a                          a
 
                                         4      4
          3       3  3      5  3    4   z    8 z        2  4       4  4
>   18 a z  + 18 a  z  + 7 a  z  + z  + -- - ---- + 26 a  z  + 14 a  z  - 
                                         4     2
                                        a     a
 
                 5       5                                             6
       6  4   4 z    13 z          5       3  5       5  5      6   8 z
>   2 a  z  + ---- - ----- - 27 a z  - 21 a  z  - 11 a  z  - 9 z  + ---- - 
                3      a                                              2
               a                                                     a
 
                                      7
        2  6       4  6    6  6   10 z         7      3  7      5  7      8
>   35 a  z  - 17 a  z  + a  z  + ----- + 8 a z  + 2 a  z  + 4 a  z  + 8 z  + 
                                    a
 
        2  8      4  8        9      3  9
>   14 a  z  + 6 a  z  + 3 a z  + 3 a  z
In[19]:=
{Vassiliev[2][Knot[10, 114]], Vassiliev[3][Knot[10, 114]]}
Out[19]=   
{1, -1}
In[20]:=
Kh[Knot[10, 114]][q, t]
Out[20]=   
8           1        3        1       4       3       7       4       8
- + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
q          13  6    11  5    9  5    9  4    7  4    7  3    5  3    5  2
          q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      7      7      8               3        3  2      5  2    5  3      7  3
>   ----- + ---- + --- + 5 q t + 7 q  t + 3 q  t  + 5 q  t  + q  t  + 3 q  t  + 
     3  2    3     q t
    q  t    q  t
 
     9  4
>   q  t
In[21]:=
ColouredJones[Knot[10, 114], 2][q]
Out[21]=   
       -18    4     2    14    24     7    58    47    50    121   47   117
144 + q    - --- + --- + --- - --- - --- + --- - --- - --- + --- - -- - --- + 
              17    16    15    14    13    12    11    10    9     8    7
             q     q     q     q     q     q     q     q     q     q    q
 
    170   20   173   179   18   188               2       3       4       5
>   --- - -- - --- + --- + -- - --- + 44 q - 150 q  + 82 q  + 42 q  - 81 q  + 
     6     5    4     3     2    q
    q     q    q     q     q
 
        6       7       8      9      10      11    12
>   31 q  + 20 q  - 26 q  + 8 q  + 4 q   - 4 q   + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10114
10.113
10113
10.115
10115