© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10111Visit 10111's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10111's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X10,4,11,3 X14,8,15,7 X8,14,9,13 X2,10,3,9 X18,12,19,11 X16,5,17,6 X4,17,5,18 X20,16,1,15 X12,20,13,19 |
Gauss Code: | {1, -5, 2, -8, 7, -1, 3, -4, 5, -2, 6, -10, 4, -3, 9, -7, 8, -6, 10, -9} |
DT (Dowker-Thistlethwaite) Code: | 6 10 16 14 2 18 8 20 4 12 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-3 + 9t-2 - 17t-1 + 21 - 17t + 9t2 - 2t3 |
Conway Polynomial: | 1 + z2 - 3z4 - 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {77, 4} |
Jones Polynomial: | 1 - 3q + 7q2 - 9q3 + 12q4 - 13q5 + 12q6 - 10q7 + 6q8 - 3q9 + q10 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | 1 - q2 + q4 + 2q6 - q8 + 4q10 - q12 + q14 - 3q18 + q20 - 3q22 + q24 + q26 - q28 + q30 |
HOMFLY-PT Polynomial: | a-8 + 2a-8z2 + a-8z4 - 3a-6 - 4a-6z2 - 3a-6z4 - a-6z6 + 2a-4 + a-4z2 - 2a-4z4 - a-4z6 + a-2 + 2a-2z2 + a-2z4 |
Kauffman Polynomial: | - a-12z2 + a-12z4 - 3a-11z3 + 3a-11z5 + a-10z2 - 5a-10z4 + 5a-10z6 - 4a-9z + 13a-9z3 - 13a-9z5 + 7a-9z7 + a-8 - 3a-8z2 + 10a-8z4 - 11a-8z6 + 6a-8z8 - 10a-7z + 30a-7z3 - 28a-7z5 + 7a-7z7 + 2a-7z9 + 3a-6 - 10a-6z2 + 22a-6z4 - 26a-6z6 + 10a-6z8 - 7a-5z + 19a-5z3 - 20a-5z5 + 3a-5z7 + 2a-5z9 + 2a-4 - 2a-4z2 + 3a-4z4 - 9a-4z6 + 4a-4z8 - a-3z + 5a-3z3 - 8a-3z5 + 3a-3z7 - a-2 + 3a-2z2 - 3a-2z4 + a-2z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 10111. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-2 - 3q-1 + 1 + 11q - 17q2 - 7q3 + 44q4 - 32q5 - 39q6 + 86q7 - 27q8 - 86q9 + 113q10 - 4q11 - 122q12 + 114q13 + 22q14 - 129q15 + 88q16 + 37q17 - 98q18 + 47q19 + 31q20 - 49q21 + 16q22 + 13q23 - 15q24 + 5q25 + 2q26 - 3q27 + q28 |
3 | q-6 - 3q-5 + q-4 + 5q-3 + 3q-2 - 17q-1 - 10 + 34q + 34q2 - 53q3 - 78q4 + 53q5 + 155q6 - 38q7 - 222q8 - 38q9 + 301q10 + 131q11 - 328q12 - 270q13 + 338q14 + 389q15 - 280q16 - 526q17 + 220q18 + 615q19 - 119q20 - 696q21 + 24q22 + 737q23 + 78q24 - 752q25 - 175q26 + 733q27 + 256q28 - 668q29 - 324q30 + 571q31 + 356q32 - 437q33 - 358q34 + 307q35 + 306q36 - 173q37 - 244q38 + 86q39 + 161q40 - 30q41 - 92q42 + 7q43 + 44q44 - 2q45 - 18q46 + 3q47 + 6q48 - 4q49 + q51 + 2q52 - 3q53 + q54 |
4 | q-12 - 3q-11 + q-10 + 5q-9 - 3q-8 + 3q-7 - 20q-6 + 2q-5 + 36q-4 + 7q-3 + 14q-2 - 107q-1 - 55 + 105q + 120q2 + 172q3 - 261q4 - 343q5 - 30q6 + 266q7 + 753q8 - 81q9 - 711q10 - 708q11 - 152q12 + 1466q13 + 834q14 - 361q15 - 1508q16 - 1546q17 + 1354q18 + 1924q19 + 1115q20 - 1407q21 - 3224q22 + 30q23 + 2152q24 + 3007q25 - 124q26 - 4177q27 - 1798q28 + 1312q29 + 4390q30 + 1649q31 - 4202q32 - 3336q33 + 11q34 + 5058q35 + 3230q36 - 3697q37 - 4377q38 - 1267q39 + 5178q40 + 4445q41 - 2834q42 - 4930q43 - 2484q44 + 4652q45 + 5204q46 - 1478q47 - 4688q48 - 3517q49 + 3213q50 + 5079q51 + 164q52 - 3345q53 - 3775q54 + 1236q55 + 3742q56 + 1226q57 - 1404q58 - 2854q59 - 203q60 + 1830q61 + 1157q62 - 34q63 - 1405q64 - 514q65 + 495q66 + 509q67 + 308q68 - 426q69 - 249q70 + 50q71 + 87q72 + 171q73 - 89q74 - 53q75 + 2q76 - 14q77 + 53q78 - 19q79 - 5q80 + 4q81 - 11q82 + 11q83 - 4q84 + q85 + 2q86 - 3q87 + q88 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 111]] |
Out[2]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[8, 14, 9, 13], > X[2, 10, 3, 9], X[18, 12, 19, 11], X[16, 5, 17, 6], X[4, 17, 5, 18], > X[20, 16, 1, 15], X[12, 20, 13, 19]] |
In[3]:= | GaussCode[Knot[10, 111]] |
Out[3]= | GaussCode[1, -5, 2, -8, 7, -1, 3, -4, 5, -2, 6, -10, 4, -3, 9, -7, 8, -6, 10, > -9] |
In[4]:= | DTCode[Knot[10, 111]] |
Out[4]= | DTCode[6, 10, 16, 14, 2, 18, 8, 20, 4, 12] |
In[5]:= | br = BR[Knot[10, 111]] |
Out[5]= | BR[4, {1, 1, 2, 2, -3, 2, 2, -1, 2, -3, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 111]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 111]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 111]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 111]][t] |
Out[10]= | 2 9 17 2 3 21 - -- + -- - -- - 17 t + 9 t - 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 111]][z] |
Out[11]= | 2 4 6 1 + z - 3 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 111]} |
In[13]:= | {KnotDet[Knot[10, 111]], KnotSignature[Knot[10, 111]]} |
Out[13]= | {77, 4} |
In[14]:= | Jones[Knot[10, 111]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10 1 - 3 q + 7 q - 9 q + 12 q - 13 q + 12 q - 10 q + 6 q - 3 q + q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 111]} |
In[16]:= | A2Invariant[Knot[10, 111]][q] |
Out[16]= | 2 4 6 8 10 12 14 18 20 22 24 26 1 - q + q + 2 q - q + 4 q - q + q - 3 q + q - 3 q + q + q - 28 30 > q + q |
In[17]:= | HOMFLYPT[Knot[10, 111]][a, z] |
Out[17]= | 2 2 2 2 4 4 4 4 6 6 -8 3 2 -2 2 z 4 z z 2 z z 3 z 2 z z z z a - -- + -- + a + ---- - ---- + -- + ---- + -- - ---- - ---- + -- - -- - -- 6 4 8 6 4 2 8 6 4 2 6 4 a a a a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 111]][a, z] |
Out[18]= | 2 2 2 2 2 -8 3 2 -2 4 z 10 z 7 z z z z 3 z 10 z 2 z a + -- + -- - a - --- - ---- - --- - -- - --- + --- - ---- - ----- - ---- + 6 4 9 7 5 3 12 10 8 6 4 a a a a a a a a a a a 2 3 3 3 3 3 4 4 4 4 3 z 3 z 13 z 30 z 19 z 5 z z 5 z 10 z 22 z > ---- - ---- + ----- + ----- + ----- + ---- + --- - ---- + ----- + ----- + 2 11 9 7 5 3 12 10 8 6 a a a a a a a a a a 4 4 5 5 5 5 5 6 6 6 3 z 3 z 3 z 13 z 28 z 20 z 8 z 5 z 11 z 26 z > ---- - ---- + ---- - ----- - ----- - ----- - ---- + ---- - ----- - ----- - 4 2 11 9 7 5 3 10 8 6 a a a a a a a a a a 6 6 7 7 7 7 8 8 8 9 9 9 z z 7 z 7 z 3 z 3 z 6 z 10 z 4 z 2 z 2 z > ---- + -- + ---- + ---- + ---- + ---- + ---- + ----- + ---- + ---- + ---- 4 2 9 7 5 3 8 6 4 7 5 a a a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 111]], Vassiliev[3][Knot[10, 111]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[10, 111]][q, t] |
Out[20]= | 3 3 5 1 2 q q 5 7 7 2 9 2 9 3 5 q + 3 q + ---- + --- + -- + 5 q t + 4 q t + 7 q t + 5 q t + 6 q t + 2 t t q t 11 3 11 4 13 4 13 5 15 5 15 6 > 7 q t + 6 q t + 6 q t + 4 q t + 6 q t + 2 q t + 17 6 17 7 19 7 21 8 > 4 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 111], 2][q] |
Out[21]= | -2 3 2 3 4 5 6 7 8 1 + q - - + 11 q - 17 q - 7 q + 44 q - 32 q - 39 q + 86 q - 27 q - q 9 10 11 12 13 14 15 16 > 86 q + 113 q - 4 q - 122 q + 114 q + 22 q - 129 q + 88 q + 17 18 19 20 21 22 23 24 > 37 q - 98 q + 47 q + 31 q - 49 q + 16 q + 13 q - 15 q + 25 26 27 28 > 5 q + 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10111 |
|