© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10112Visit 10112's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10112's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X8394 X18,11,19,12 X20,13,1,14 X2,16,3,15 X4,17,5,18 X12,19,13,20 X10,6,11,5 X14,7,15,8 X16,10,17,9 |
Gauss Code: | {1, -5, 2, -6, 8, -1, 9, -2, 10, -8, 3, -7, 4, -9, 5, -10, 6, -3, 7, -4} |
DT (Dowker-Thistlethwaite) Code: | 6 8 10 14 16 18 20 2 4 12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-4 + 5t-3 - 11t-2 + 17t-1 - 19 + 17t - 11t2 + 5t3 - t4 |
Conway Polynomial: | 1 + 2z2 - z4 - 3z6 - z8 |
Other knots with the same Alexander/Conway Polynomial: | {K11a184, ...} |
Determinant and Signature: | {87, -2} |
Jones Polynomial: | q-7 - 4q-6 + 7q-5 - 11q-4 + 14q-3 - 14q-2 + 14q-1 - 10 + 7q - 4q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-20 - 2q-18 + q-16 - 3q-14 - q-12 + 2q-10 - q-8 + 6q-6 - q-4 + 3q-2 - 2q2 + q4 - 2q6 + q8 |
HOMFLY-PT Polynomial: | - 1 + z2 + 3z4 + z6 + 4a2 - 7a2z4 - 5a2z6 - a2z8 - 2a4 + a4z2 + 3a4z4 + a4z6 |
Kauffman Polynomial: | - 2a-2z4 + a-2z6 + 6a-1z3 - 11a-1z5 + 4a-1z7 - 1 - 3z2 + 15z4 - 18z6 + 6z8 + 13az3 - 16az5 + 3az9 - 4a2 - 3a2z2 + 28a2z4 - 35a2z6 + 13a2z8 + 2a3z + 9a3z3 - 17a3z5 + 4a3z7 + 3a3z9 - 2a4 + a4z2 + 3a4z4 - 9a4z6 + 7a4z8 + 2a5z - a5z3 - 8a5z5 + 8a5z7 + a6z2 - 7a6z4 + 7a6z6 - 3a7z3 + 4a7z5 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -2} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10112. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 4q-19 + 3q-18 + 9q-17 - 22q-16 + 14q-15 + 27q-14 - 65q-13 + 33q-12 + 66q-11 - 123q-10 + 38q-9 + 117q-8 - 158q-7 + 19q-6 + 148q-5 - 148q-4 - 12q-3 + 143q-2 - 103q-1 - 36 + 106q - 47q2 - 41q3 + 54q4 - 8q5 - 23q6 + 14q7 + 2q8 - 4q9 + q10 |
3 | q-39 - 4q-38 + 3q-37 + 5q-36 - 2q-35 - 12q-34 + 3q-33 + 23q-32 - 19q-31 - 24q-30 + 37q-29 + 47q-28 - 94q-27 - 75q-26 + 163q-25 + 155q-24 - 259q-23 - 268q-22 + 332q-21 + 433q-20 - 380q-19 - 610q-18 + 375q-17 + 769q-16 - 310q-15 - 908q-14 + 231q-13 + 966q-12 - 100q-11 - 1001q-10 - 7q-9 + 956q-8 + 148q-7 - 906q-6 - 246q-5 + 785q-4 + 368q-3 - 666q-2 - 434q-1 + 494 + 487q - 326q2 - 476q3 + 158q4 + 416q5 - 20q6 - 323q7 - 63q8 + 210q9 + 95q10 - 113q11 - 83q12 + 43q13 + 58q14 - 13q15 - 26q16 + 9q18 + 2q19 - 4q20 + q21 |
4 | q-64 - 4q-63 + 3q-62 + 5q-61 - 6q-60 + 8q-59 - 23q-58 + 9q-57 + 17q-56 - 19q-55 + 59q-54 - 62q-53 - 17q-51 - 95q-50 + 230q-49 + 22q-48 + 51q-47 - 252q-46 - 530q-45 + 437q-44 + 533q-43 + 631q-42 - 576q-41 - 1820q-40 - 2q-39 + 1347q-38 + 2403q-37 - 122q-36 - 3733q-35 - 1845q-34 + 1370q-33 + 4953q-32 + 1881q-31 - 4890q-30 - 4476q-29 - 196q-28 + 6680q-27 + 4635q-26 - 4374q-25 - 6251q-24 - 2562q-23 + 6689q-22 + 6586q-21 - 2802q-20 - 6449q-19 - 4440q-18 + 5500q-17 + 7191q-16 - 1089q-15 - 5562q-14 - 5519q-13 + 3792q-12 + 6878q-11 + 585q-10 - 4077q-9 - 6042q-8 + 1676q-7 + 5840q-6 + 2227q-5 - 1973q-4 - 5829q-3 - 662q-2 + 3856q-1 + 3222 + 491q - 4366q2 - 2298q3 + 1209q4 + 2753q5 + 2231q6 - 1952q7 - 2284q8 - 819q9 + 1115q10 + 2270q11 + 6q12 - 1023q13 - 1220q14 - 235q15 + 1140q16 + 537q17 + 21q18 - 576q19 - 476q20 + 230q21 + 235q22 + 210q23 - 83q24 - 192q25 - 6q26 + 16q27 + 70q28 + 11q29 - 32q30 - 3q31 - 5q32 + 9q33 + 2q34 - 4q35 + q36 |
5 | q-95 - 4q-94 + 3q-93 + 5q-92 - 6q-91 + 4q-90 - 3q-89 - 17q-88 + 3q-87 + 27q-86 + 12q-85 + 17q-84 - 15q-83 - 88q-82 - 72q-81 + 35q-80 + 169q-79 + 204q-78 + 49q-77 - 296q-76 - 557q-75 - 301q-74 + 495q-73 + 1132q-72 + 904q-71 - 429q-70 - 2126q-69 - 2334q-68 + 46q-67 + 3401q-66 + 4668q-65 + 1606q-64 - 4597q-63 - 8507q-62 - 4934q-61 + 4988q-60 + 13263q-59 + 10885q-58 - 3367q-57 - 18472q-56 - 19347q-55 - 1315q-54 + 22500q-53 + 29845q-52 + 9608q-51 - 23983q-50 - 40637q-49 - 21187q-48 + 21632q-47 + 50059q-46 + 34582q-45 - 15438q-44 - 56204q-43 - 47851q-42 + 6144q-41 + 58319q-40 + 59125q-39 + 4579q-38 - 56686q-37 - 66993q-36 - 14921q-35 + 52009q-34 + 71274q-33 + 23873q-32 - 46097q-31 - 72336q-30 - 30398q-29 + 39436q-28 + 71176q-27 + 35262q-26 - 33287q-25 - 68688q-24 - 38415q-23 + 27032q-22 + 65425q-21 + 41233q-20 - 20995q-19 - 61496q-18 - 43492q-17 + 13975q-16 + 56709q-15 + 45857q-14 - 6411q-13 - 50446q-12 - 47264q-11 - 2411q-10 + 42408q-9 + 47609q-8 + 11130q-7 - 32362q-6 - 45362q-5 - 19455q-4 + 20767q-3 + 40565q-2 + 25475q-1 - 8697 - 32575q - 28442q2 - 2495q3 + 22575q4 + 27476q5 + 11014q6 - 11687q7 - 22871q8 - 15820q9 + 1851q10 + 15821q11 + 16469q12 + 5306q13 - 8006q14 - 13720q15 - 8945q16 + 1320q17 + 9027q18 + 9219q19 + 3047q20 - 4190q21 - 7184q22 - 4706q23 + 445q24 + 4276q25 + 4402q26 + 1492q27 - 1751q28 - 2976q29 - 1937q30 + 104q31 + 1564q32 + 1534q33 + 472q34 - 545q35 - 848q36 - 524q37 + 44q38 + 394q39 + 317q40 + 65q41 - 115q42 - 133q43 - 74q44 + 22q45 + 63q46 + 22q47 - 8q48 - 9q49 - 8q50 - 5q51 + 9q52 + 2q53 - 4q54 + q55 |
6 | q-132 - 4q-131 + 3q-130 + 5q-129 - 6q-128 + 4q-127 - 7q-126 + 3q-125 - 23q-124 + 13q-123 + 58q-122 - 20q-121 + 12q-120 - 46q-119 - 49q-118 - 125q-117 + 43q-116 + 292q-115 + 98q-114 + 113q-113 - 182q-112 - 399q-111 - 699q-110 - 44q-109 + 1020q-108 + 949q-107 + 938q-106 - 316q-105 - 1815q-104 - 3173q-103 - 1348q-102 + 2604q-101 + 4536q-100 + 5297q-99 + 1258q-98 - 5644q-97 - 12103q-96 - 9363q-95 + 2588q-94 + 14378q-93 + 22294q-92 + 14459q-91 - 8179q-90 - 34699q-89 - 40520q-88 - 15829q-87 + 24702q-86 + 64252q-85 + 65883q-84 + 17368q-83 - 61507q-82 - 112645q-81 - 91715q-80 - 4372q-79 + 115245q-78 + 177133q-77 + 122951q-76 - 36886q-75 - 198805q-74 - 246291q-73 - 135601q-72 + 102154q-71 + 304969q-70 + 322841q-69 + 108338q-68 - 208035q-67 - 415401q-66 - 369190q-65 - 44939q-64 + 342567q-63 + 529521q-62 + 355455q-61 - 75312q-60 - 481338q-59 - 596395q-58 - 287062q-57 + 235112q-56 + 621571q-55 + 581643q-54 + 142621q-53 - 403747q-52 - 701406q-51 - 497136q-50 + 52303q-49 + 575432q-48 + 686103q-47 + 324454q-46 - 259600q-45 - 678658q-44 - 595466q-43 - 97920q-42 + 469528q-41 + 680395q-40 + 414046q-39 - 139053q-38 - 604029q-37 - 607338q-36 - 181645q-35 + 374947q-34 + 634805q-33 + 445995q-32 - 57346q-31 - 531071q-30 - 595039q-29 - 238220q-28 + 292811q-27 + 587365q-26 + 473028q-25 + 25931q-24 - 450631q-23 - 582336q-22 - 310007q-21 + 183718q-20 + 519968q-19 + 505015q-18 + 142871q-17 - 323845q-16 - 541057q-15 - 392844q-14 + 24539q-13 + 391334q-12 + 501456q-11 + 275403q-10 - 133940q-9 - 423976q-8 - 431978q-7 - 153273q-6 + 188234q-5 + 406834q-4 + 353982q-3 + 75072q-2 - 220510q-1 - 363557 - 265788q - 33219q2 + 214477q3 + 308987q4 + 206600q5 + 217q6 - 188271q7 - 241469q8 - 166458q9 + 7525q10 + 152823q11 + 192532q12 + 124933q13 - 3599q14 - 107807q15 - 152582q16 - 98846q17 - 4510q18 + 77740q19 + 108954q20 + 79351q21 + 17336q22 - 53589q23 - 78088q24 - 63016q25 - 18441q26 + 28028q27 + 54149q28 + 51592q29 + 17450q30 - 13872q31 - 35784q32 - 35541q33 - 18963q34 + 5342q35 + 23945q36 + 23370q37 + 14894q38 - 932q39 - 12353q40 - 16538q41 - 10547q42 - 35q43 + 6049q44 + 9489q45 + 6581q46 + 1697q47 - 3686q48 - 5067q49 - 3293q50 - 1324q51 + 1470q52 + 2348q53 + 2093q54 + 367q55 - 620q56 - 836q57 - 903q58 - 250q59 + 190q60 + 491q61 + 210q62 + 56q63 - 21q64 - 153q65 - 86q66 - 26q67 + 68q68 + 15q69 + 3q70 + 15q71 - 14q72 - 8q73 - 5q74 + 9q75 + 2q76 - 4q77 + q78 |
7 | q-175 - 4q-174 + 3q-173 + 5q-172 - 6q-171 + 4q-170 - 7q-169 - q-168 - 3q-167 - 13q-166 + 44q-165 + 26q-164 - 25q-163 - 9q-162 - 59q-161 - 45q-160 - 23q-159 - 17q-158 + 237q-157 + 207q-156 + q-155 - 94q-154 - 390q-153 - 358q-152 - 214q-151 + 11q-150 + 895q-149 + 1047q-148 + 445q-147 - 298q-146 - 1680q-145 - 1866q-144 - 1068q-143 + 370q-142 + 3300q-141 + 4247q-140 + 2497q-139 - 1259q-138 - 6990q-137 - 8897q-136 - 5527q-135 + 2242q-134 + 13821q-133 + 19478q-132 + 14365q-131 - 2055q-130 - 26819q-129 - 41684q-128 - 35039q-127 - 4126q-126 + 44758q-125 + 81789q-124 + 81618q-123 + 30928q-122 - 62536q-121 - 147523q-120 - 171068q-119 - 99750q-118 + 60507q-117 + 232766q-116 + 321322q-115 + 247773q-114 - 1268q-113 - 318086q-112 - 538782q-111 - 508679q-110 - 169154q-109 + 350733q-108 + 801291q-107 + 906860q-106 + 512977q-105 - 255713q-104 - 1050542q-103 - 1427253q-102 - 1072392q-101 - 55431q-100 + 1188097q-99 + 2004985q-98 + 1846579q-97 + 650464q-96 - 1100025q-95 - 2524928q-94 - 2768946q-93 - 1543588q-92 + 692290q-91 + 2847577q-90 + 3709833q-89 + 2672182q-88 + 70836q-87 - 2849932q-86 - 4509092q-85 - 3903117q-84 - 1138645q-83 + 2473724q-82 + 5018303q-81 + 5059882q-80 + 2384254q-79 - 1743975q-78 - 5151849q-77 - 5980942q-76 - 3634733q-75 + 771904q-74 + 4910362q-73 + 6558152q-72 + 4722091q-71 + 287316q-70 - 4374923q-69 - 6768298q-68 - 5532402q-67 - 1277096q-66 + 3679256q-65 + 6666957q-64 + 6023339q-63 + 2081549q-62 - 2958913q-61 - 6356639q-60 - 6228347q-59 - 2654449q-58 + 2321108q-57 + 5956977q-56 + 6225844q-55 + 3006066q-54 - 1818171q-53 - 5558109q-52 - 6111765q-51 - 3198548q-50 + 1449833q-49 + 5218300q-48 + 5969456q-47 + 3304370q-46 - 1177198q-45 - 4945050q-44 - 5851981q-43 - 3399370q-42 + 940126q-41 + 4718685q-40 + 5780653q-39 + 3532924q-38 - 677796q-37 - 4491455q-36 - 5745173q-35 - 3735338q-34 + 338862q-33 + 4213556q-32 + 5712096q-31 + 4003226q-30 + 110075q-29 - 3829595q-28 - 5632970q-27 - 4314371q-26 - 677090q-25 + 3301323q-24 + 5448137q-23 + 4615074q-22 + 1345575q-21 - 2600896q-20 - 5101061q-19 - 4840920q-18 - 2065024q-17 + 1737138q-16 + 4544110q-15 + 4907479q-14 + 2758223q-13 - 745625q-12 - 3758569q-11 - 4744622q-10 - 3324924q-9 - 288310q-8 + 2766712q-7 + 4297269q-6 + 3659966q-5 + 1255163q-4 - 1639523q-3 - 3565159q-2 - 3681823q-1 - 2022845 + 498263q + 2601296q2 + 3353864q3 + 2479981q4 + 513794q5 - 1522784q6 - 2712791q7 - 2561391q8 - 1256298q9 + 484452q10 + 1862041q11 + 2276578q12 + 1638995q13 + 358674q14 - 958013q15 - 1716158q16 - 1646414q17 - 892107q18 + 165462q19 + 1026443q20 + 1348069q21 + 1079864q22 + 388842q23 - 371829q24 - 876873q25 - 969702q26 - 651507q27 - 116839q28 + 385742q29 + 674467q30 + 650984q31 + 377537q32 + 1427q33 - 329249q34 - 479667q35 - 424559q36 - 219684q37 + 44859q38 + 248280q39 + 328024q40 + 276101q41 + 122230q42 - 51085q43 - 178291q44 - 221936q45 - 170667q46 - 66572q47 + 45576q48 + 125723q49 + 141541q50 + 103269q51 + 32573q52 - 40221q53 - 81674q54 - 86351q55 - 58147q56 - 11109q57 + 29082q58 + 51247q59 + 49490q60 + 27496q61 + 1745q62 - 19717q63 - 29328q64 - 24453q65 - 12339q66 + 2272q67 + 12544q68 + 14273q69 + 10866q70 + 4089q71 - 2726q72 - 6050q73 - 6650q74 - 4106q75 - 476q76 + 1680q77 + 2755q78 + 2323q79 + 1068q80 + 19q81 - 937q82 - 1114q83 - 575q84 - 170q85 + 213q86 + 307q87 + 218q88 + 189q89 - 18q90 - 130q91 - 86q92 - 39q93 + 20q94 + 20q95 - 4q96 + 26q97 + 10q98 - 14q99 - 8q100 - 5q101 + 9q102 + 2q103 - 4q104 + q105 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 112]] |
Out[2]= | PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[18, 11, 19, 12], X[20, 13, 1, 14], > X[2, 16, 3, 15], X[4, 17, 5, 18], X[12, 19, 13, 20], X[10, 6, 11, 5], > X[14, 7, 15, 8], X[16, 10, 17, 9]] |
In[3]:= | GaussCode[Knot[10, 112]] |
Out[3]= | GaussCode[1, -5, 2, -6, 8, -1, 9, -2, 10, -8, 3, -7, 4, -9, 5, -10, 6, -3, 7, > -4] |
In[4]:= | DTCode[Knot[10, 112]] |
Out[4]= | DTCode[6, 8, 10, 14, 16, 18, 20, 2, 4, 12] |
In[5]:= | br = BR[Knot[10, 112]] |
Out[5]= | BR[3, {-1, -1, -1, 2, -1, 2, -1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 112]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 112]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 112]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 112]][t] |
Out[10]= | -4 5 11 17 2 3 4 -19 - t + -- - -- + -- + 17 t - 11 t + 5 t - t 3 2 t t t |
In[11]:= | Conway[Knot[10, 112]][z] |
Out[11]= | 2 4 6 8 1 + 2 z - z - 3 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 112], Knot[11, Alternating, 184]} |
In[13]:= | {KnotDet[Knot[10, 112]], KnotSignature[Knot[10, 112]]} |
Out[13]= | {87, -2} |
In[14]:= | Jones[Knot[10, 112]][q] |
Out[14]= | -7 4 7 11 14 14 14 2 3 -10 + q - -- + -- - -- + -- - -- + -- + 7 q - 4 q + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 112]} |
In[16]:= | A2Invariant[Knot[10, 112]][q] |
Out[16]= | -20 2 -16 3 -12 2 -8 6 -4 3 2 4 6 q - --- + q - --- - q + --- - q + -- - q + -- - 2 q + q - 2 q + 18 14 10 6 2 q q q q q 8 > q |
In[17]:= | HOMFLYPT[Knot[10, 112]][a, z] |
Out[17]= | 2 4 2 4 2 4 2 4 4 4 6 2 6 -1 + 4 a - 2 a + z + a z + 3 z - 7 a z + 3 a z + z - 5 a z + 4 6 2 8 > a z - a z |
In[18]:= | Kauffman[Knot[10, 112]][a, z] |
Out[18]= | 3 2 4 3 5 2 2 2 4 2 6 2 6 z -1 - 4 a - 2 a + 2 a z + 2 a z - 3 z - 3 a z + a z + a z + ---- + a 4 3 3 3 5 3 7 3 4 2 z 2 4 4 4 > 13 a z + 9 a z - a z - 3 a z + 15 z - ---- + 28 a z + 3 a z - 2 a 5 6 4 8 4 11 z 5 3 5 5 5 7 5 6 > 7 a z + a z - ----- - 16 a z - 17 a z - 8 a z + 4 a z - 18 z + a 6 7 z 2 6 4 6 6 6 4 z 3 7 5 7 8 > -- - 35 a z - 9 a z + 7 a z + ---- + 4 a z + 8 a z + 6 z + 2 a a 2 8 4 8 9 3 9 > 13 a z + 7 a z + 3 a z + 3 a z |
In[19]:= | {Vassiliev[2][Knot[10, 112]], Vassiliev[3][Knot[10, 112]]} |
Out[19]= | {2, -2} |
In[20]:= | Kh[Knot[10, 112]][q, t] |
Out[20]= | 7 8 1 3 1 4 3 7 4 7 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 7 7 7 4 t 2 3 2 3 3 5 3 > ----- + ---- + ---- + --- + 6 q t + 3 q t + 4 q t + q t + 3 q t + 5 2 5 3 q q t q t q t 7 4 > q t |
In[21]:= | ColouredJones[Knot[10, 112], 2][q] |
Out[21]= | -20 4 3 9 22 14 27 65 33 66 123 38 -36 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + -- + 19 18 17 16 15 14 13 12 11 10 9 q q q q q q q q q q q 117 158 19 148 148 12 143 103 2 3 > --- - --- + -- + --- - --- - -- + --- - --- + 106 q - 47 q - 41 q + 8 7 6 5 4 3 2 q q q q q q q q 4 5 6 7 8 9 10 > 54 q - 8 q - 23 q + 14 q + 2 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10112 |
|