© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.109
10109
10.111
10111
    10.110
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 10110   

Visit 10110's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10110's page at Knotilus!

Acknowledgement

10.110
KnotPlot

PD Presentation: X1627 X7,20,8,1 X3,11,4,10 X5,16,6,17 X17,8,18,9 X9,14,10,15 X11,3,12,2 X15,4,16,5 X13,19,14,18 X19,13,20,12

Gauss Code: {-1, 7, -3, 8, -4, 1, -2, 5, -6, 3, -7, 10, -9, 6, -8, 4, -5, 9, -10, 2}

DT (Dowker-Thistlethwaite) Code: 6 10 16 20 14 2 18 4 8 12

Minimum Braid Representative:


Length is 12, width is 5
Braid index is 5

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Chiral 2 3 3 / NotAvailable 1

Alexander Polynomial: t-3 - 8t-2 + 20t-1 - 25 + 20t - 8t2 + t3

Conway Polynomial: 1 - 3z2 - 2z4 + z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {83, -2}

Jones Polynomial: q-7 - 3q-6 + 7q-5 - 11q-4 + 13q-3 - 14q-2 + 13q-1 - 10 + 7q - 3q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-22 - q-18 + 3q-16 - 2q-14 + q-10 - 3q-8 + 2q-6 - 3q-4 + 2q-2 + 1 - q2 + 3q4 - q6 + q10

HOMFLY-PT Polynomial: a-2 + a-2z2 - 3z2 - 2z4 + a2z2 + 2a2z4 + a2z6 - a4 - 3a4z2 - 2a4z4 + a6 + a6z2

Kauffman Polynomial: - a-2 + 3a-2z2 - 3a-2z4 + a-2z6 - a-1z + 6a-1z3 - 8a-1z5 + 3a-1z7 + 2z2 + z4 - 8z6 + 4z8 - 3az + 13az3 - 19az5 + 4az7 + 2az9 - a2z2 + 8a2z4 - 20a2z6 + 10a2z8 - 6a3z + 21a3z3 - 27a3z5 + 9a3z7 + 2a3z9 - a4 + 6a4z2 - 4a4z4 - 5a4z6 + 6a4z8 - 4a5z + 12a5z3 - 13a5z5 + 8a5z7 - a6 + 5a6z2 - 7a6z4 + 6a6z6 - 2a7z3 + 3a7z5 - a8z2 + a8z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {-3, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10110. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7          1
j = 5         2 
j = 3        51 
j = 1       52  
j = -1      85   
j = -3     76    
j = -5    67     
j = -7   57      
j = -9  26       
j = -11 15        
j = -13 2         
j = -151          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-20 - 3q-19 + 3q-18 + 5q-17 - 19q-16 + 17q-15 + 21q-14 - 64q-13 + 38q-12 + 63q-11 - 124q-10 + 42q-9 + 114q-8 - 158q-7 + 22q-6 + 144q-5 - 147q-4 - 10q-3 + 139q-2 - 101q-1 - 35 + 101q - 44q2 - 37q3 + 48q4 - 7q5 - 18q6 + 11q7 + q8 - 3q9 + q10
3 q-39 - 3q-38 + 3q-37 + q-36 - 3q-35 - 6q-34 + 14q-33 + 8q-32 - 34q-31 - 18q-30 + 78q-29 + 37q-28 - 137q-27 - 100q-26 + 231q-25 + 195q-24 - 318q-23 - 343q-22 + 382q-21 + 532q-20 - 413q-19 - 719q-18 + 385q-17 + 891q-16 - 318q-15 - 1010q-14 + 210q-13 + 1081q-12 - 91q-11 - 1091q-10 - 39q-9 + 1052q-8 + 168q-7 - 970q-6 - 286q-5 + 844q-4 + 396q-3 - 697q-2 - 457q-1 + 508 + 492q - 330q2 - 460q3 + 156q4 + 393q5 - 35q6 - 281q7 - 50q8 + 184q9 + 66q10 - 90q11 - 61q12 + 37q13 + 37q14 - 10q15 - 18q16 + 3q17 + 5q18 + q19 - 3q20 + q21
4 q-64 - 3q-63 + 3q-62 + q-61 - 7q-60 + 10q-59 - 9q-58 + 11q-57 - 3q-56 - 39q-55 + 49q-54 + 3q-53 + 40q-52 - 52q-51 - 190q-50 + 137q-49 + 165q-48 + 237q-47 - 214q-46 - 770q-45 + 79q-44 + 657q-43 + 1108q-42 - 202q-41 - 2133q-40 - 840q-39 + 1124q-38 + 3111q-37 + 881q-36 - 3771q-35 - 3098q-34 + 479q-33 + 5516q-32 + 3453q-31 - 4343q-30 - 5768q-29 - 1667q-28 + 6806q-27 + 6391q-26 - 3320q-25 - 7298q-24 - 4265q-23 + 6420q-22 + 8244q-21 - 1495q-20 - 7223q-19 - 6150q-18 + 4972q-17 + 8656q-16 + 331q-15 - 6052q-14 - 7124q-13 + 3037q-12 + 8024q-11 + 2018q-10 - 4194q-9 - 7352q-8 + 756q-7 + 6490q-6 + 3449q-5 - 1739q-4 - 6615q-3 - 1499q-2 + 4009q-1 + 3963 + 807q - 4608q2 - 2760q3 + 1157q4 + 2993q5 + 2308q6 - 1950q7 - 2354q8 - 744q9 + 1161q10 + 2090q11 - 71q12 - 990q13 - 1009q14 - 109q15 + 969q16 + 379q17 - 45q18 - 439q19 - 315q20 + 202q21 + 151q22 + 121q23 - 66q24 - 120q25 + 14q26 + 9q27 + 39q28 + 2q29 - 21q30 + 3q31 - 3q32 + 5q33 + q34 - 3q35 + q36


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 110]]
Out[2]=   
PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[3, 11, 4, 10], X[5, 16, 6, 17], 
 
>   X[17, 8, 18, 9], X[9, 14, 10, 15], X[11, 3, 12, 2], X[15, 4, 16, 5], 
 
>   X[13, 19, 14, 18], X[19, 13, 20, 12]]
In[3]:=
GaussCode[Knot[10, 110]]
Out[3]=   
GaussCode[-1, 7, -3, 8, -4, 1, -2, 5, -6, 3, -7, 10, -9, 6, -8, 4, -5, 9, -10, 
 
>   2]
In[4]:=
DTCode[Knot[10, 110]]
Out[4]=   
DTCode[6, 10, 16, 20, 14, 2, 18, 4, 8, 12]
In[5]:=
br = BR[Knot[10, 110]]
Out[5]=   
BR[5, {-1, 2, -1, -3, -2, -2, -2, 4, 3, -2, 3, 4}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{5, 12}
In[7]:=
BraidIndex[Knot[10, 110]]
Out[7]=   
5
In[8]:=
Show[DrawMorseLink[Knot[10, 110]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 110]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Chiral, 2, 3, 3, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 110]][t]
Out[10]=   
       -3   8    20             2    3
-25 + t   - -- + -- + 20 t - 8 t  + t
             2   t
            t
In[11]:=
Conway[Knot[10, 110]][z]
Out[11]=   
       2      4    6
1 - 3 z  - 2 z  + z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 110]}
In[13]:=
{KnotDet[Knot[10, 110]], KnotSignature[Knot[10, 110]]}
Out[13]=   
{83, -2}
In[14]:=
Jones[Knot[10, 110]][q]
Out[14]=   
       -7   3    7    11   13   14   13            2    3
-10 + q   - -- + -- - -- + -- - -- + -- + 7 q - 3 q  + q
             6    5    4    3    2   q
            q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 110]}
In[16]:=
A2Invariant[Knot[10, 110]][q]
Out[16]=   
     -22    -18    3     2     -10   3    2    3    2     2      4    6    10
1 + q    - q    + --- - --- + q    - -- + -- - -- + -- - q  + 3 q  - q  + q
                   16    14           8    6    4    2
                  q     q            q    q    q    q
In[17]:=
HOMFLYPT[Knot[10, 110]][a, z]
Out[17]=   
                        2
 -2    4    6      2   z     2  2      4  2    6  2      4      2  4
a   - a  + a  - 3 z  + -- + a  z  - 3 a  z  + a  z  - 2 z  + 2 a  z  - 
                        2
                       a
 
       4  4    2  6
>   2 a  z  + a  z
In[18]:=
Kauffman[Knot[10, 110]][a, z]
Out[18]=   
                                                         2
  -2    4    6   z              3        5        2   3 z     2  2      4  2
-a   - a  - a  - - - 3 a z - 6 a  z - 4 a  z + 2 z  + ---- - a  z  + 6 a  z  + 
                 a                                      2
                                                       a
 
                         3
       6  2    8  2   6 z          3       3  3       5  3      7  3    4
>   5 a  z  - a  z  + ---- + 13 a z  + 21 a  z  + 12 a  z  - 2 a  z  + z  - 
                       a
 
       4                                            5
    3 z       2  4      4  4      6  4    8  4   8 z          5       3  5
>   ---- + 8 a  z  - 4 a  z  - 7 a  z  + a  z  - ---- - 19 a z  - 27 a  z  - 
      2                                           a
     a
 
                                 6                                     7
        5  5      7  5      6   z        2  6      4  6      6  6   3 z
>   13 a  z  + 3 a  z  - 8 z  + -- - 20 a  z  - 5 a  z  + 6 a  z  + ---- + 
                                 2                                   a
                                a
 
         7      3  7      5  7      8       2  8      4  8        9      3  9
>   4 a z  + 9 a  z  + 8 a  z  + 4 z  + 10 a  z  + 6 a  z  + 2 a z  + 2 a  z
In[19]:=
{Vassiliev[2][Knot[10, 110]], Vassiliev[3][Knot[10, 110]]}
Out[19]=   
{-3, 3}
In[20]:=
Kh[Knot[10, 110]][q, t]
Out[20]=   
6    8     1        2        1        5        2       6       5       7
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
 3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3    7  2
q        q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      6      7      7     5 t                2      3  2    3  3      5  3
>   ----- + ---- + ---- + --- + 5 q t + 2 q t  + 5 q  t  + q  t  + 2 q  t  + 
     5  2    5      3      q
    q  t    q  t   q  t
 
     7  4
>   q  t
In[21]:=
ColouredJones[Knot[10, 110], 2][q]
Out[21]=   
       -20    3     3     5    19    17    21    64    38    63    124   42
-35 + q    - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + -- + 
              19    18    17    16    15    14    13    12    11    10    9
             q     q     q     q     q     q     q     q     q     q     q
 
    114   158   22   144   147   10   139   101               2       3
>   --- - --- + -- + --- - --- - -- + --- - --- + 101 q - 44 q  - 37 q  + 
     8     7     6    5     4     3    2     q
    q     q     q    q     q     q    q
 
        4      5       6       7    8      9    10
>   48 q  - 7 q  - 18 q  + 11 q  + q  - 3 q  + q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10110
10.109
10109
10.111
10111