© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10110Visit 10110's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10110's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X7,20,8,1 X3,11,4,10 X5,16,6,17 X17,8,18,9 X9,14,10,15 X11,3,12,2 X15,4,16,5 X13,19,14,18 X19,13,20,12 |
Gauss Code: | {-1, 7, -3, 8, -4, 1, -2, 5, -6, 3, -7, 10, -9, 6, -8, 4, -5, 9, -10, 2} |
DT (Dowker-Thistlethwaite) Code: | 6 10 16 20 14 2 18 4 8 12 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-3 - 8t-2 + 20t-1 - 25 + 20t - 8t2 + t3 |
Conway Polynomial: | 1 - 3z2 - 2z4 + z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {83, -2} |
Jones Polynomial: | q-7 - 3q-6 + 7q-5 - 11q-4 + 13q-3 - 14q-2 + 13q-1 - 10 + 7q - 3q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-22 - q-18 + 3q-16 - 2q-14 + q-10 - 3q-8 + 2q-6 - 3q-4 + 2q-2 + 1 - q2 + 3q4 - q6 + q10 |
HOMFLY-PT Polynomial: | a-2 + a-2z2 - 3z2 - 2z4 + a2z2 + 2a2z4 + a2z6 - a4 - 3a4z2 - 2a4z4 + a6 + a6z2 |
Kauffman Polynomial: | - a-2 + 3a-2z2 - 3a-2z4 + a-2z6 - a-1z + 6a-1z3 - 8a-1z5 + 3a-1z7 + 2z2 + z4 - 8z6 + 4z8 - 3az + 13az3 - 19az5 + 4az7 + 2az9 - a2z2 + 8a2z4 - 20a2z6 + 10a2z8 - 6a3z + 21a3z3 - 27a3z5 + 9a3z7 + 2a3z9 - a4 + 6a4z2 - 4a4z4 - 5a4z6 + 6a4z8 - 4a5z + 12a5z3 - 13a5z5 + 8a5z7 - a6 + 5a6z2 - 7a6z4 + 6a6z6 - 2a7z3 + 3a7z5 - a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-3, 3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 10110. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 3q-19 + 3q-18 + 5q-17 - 19q-16 + 17q-15 + 21q-14 - 64q-13 + 38q-12 + 63q-11 - 124q-10 + 42q-9 + 114q-8 - 158q-7 + 22q-6 + 144q-5 - 147q-4 - 10q-3 + 139q-2 - 101q-1 - 35 + 101q - 44q2 - 37q3 + 48q4 - 7q5 - 18q6 + 11q7 + q8 - 3q9 + q10 |
3 | q-39 - 3q-38 + 3q-37 + q-36 - 3q-35 - 6q-34 + 14q-33 + 8q-32 - 34q-31 - 18q-30 + 78q-29 + 37q-28 - 137q-27 - 100q-26 + 231q-25 + 195q-24 - 318q-23 - 343q-22 + 382q-21 + 532q-20 - 413q-19 - 719q-18 + 385q-17 + 891q-16 - 318q-15 - 1010q-14 + 210q-13 + 1081q-12 - 91q-11 - 1091q-10 - 39q-9 + 1052q-8 + 168q-7 - 970q-6 - 286q-5 + 844q-4 + 396q-3 - 697q-2 - 457q-1 + 508 + 492q - 330q2 - 460q3 + 156q4 + 393q5 - 35q6 - 281q7 - 50q8 + 184q9 + 66q10 - 90q11 - 61q12 + 37q13 + 37q14 - 10q15 - 18q16 + 3q17 + 5q18 + q19 - 3q20 + q21 |
4 | q-64 - 3q-63 + 3q-62 + q-61 - 7q-60 + 10q-59 - 9q-58 + 11q-57 - 3q-56 - 39q-55 + 49q-54 + 3q-53 + 40q-52 - 52q-51 - 190q-50 + 137q-49 + 165q-48 + 237q-47 - 214q-46 - 770q-45 + 79q-44 + 657q-43 + 1108q-42 - 202q-41 - 2133q-40 - 840q-39 + 1124q-38 + 3111q-37 + 881q-36 - 3771q-35 - 3098q-34 + 479q-33 + 5516q-32 + 3453q-31 - 4343q-30 - 5768q-29 - 1667q-28 + 6806q-27 + 6391q-26 - 3320q-25 - 7298q-24 - 4265q-23 + 6420q-22 + 8244q-21 - 1495q-20 - 7223q-19 - 6150q-18 + 4972q-17 + 8656q-16 + 331q-15 - 6052q-14 - 7124q-13 + 3037q-12 + 8024q-11 + 2018q-10 - 4194q-9 - 7352q-8 + 756q-7 + 6490q-6 + 3449q-5 - 1739q-4 - 6615q-3 - 1499q-2 + 4009q-1 + 3963 + 807q - 4608q2 - 2760q3 + 1157q4 + 2993q5 + 2308q6 - 1950q7 - 2354q8 - 744q9 + 1161q10 + 2090q11 - 71q12 - 990q13 - 1009q14 - 109q15 + 969q16 + 379q17 - 45q18 - 439q19 - 315q20 + 202q21 + 151q22 + 121q23 - 66q24 - 120q25 + 14q26 + 9q27 + 39q28 + 2q29 - 21q30 + 3q31 - 3q32 + 5q33 + q34 - 3q35 + q36 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 110]] |
Out[2]= | PD[X[1, 6, 2, 7], X[7, 20, 8, 1], X[3, 11, 4, 10], X[5, 16, 6, 17], > X[17, 8, 18, 9], X[9, 14, 10, 15], X[11, 3, 12, 2], X[15, 4, 16, 5], > X[13, 19, 14, 18], X[19, 13, 20, 12]] |
In[3]:= | GaussCode[Knot[10, 110]] |
Out[3]= | GaussCode[-1, 7, -3, 8, -4, 1, -2, 5, -6, 3, -7, 10, -9, 6, -8, 4, -5, 9, -10, > 2] |
In[4]:= | DTCode[Knot[10, 110]] |
Out[4]= | DTCode[6, 10, 16, 20, 14, 2, 18, 4, 8, 12] |
In[5]:= | br = BR[Knot[10, 110]] |
Out[5]= | BR[5, {-1, 2, -1, -3, -2, -2, -2, 4, 3, -2, 3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 110]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 110]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 110]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 110]][t] |
Out[10]= | -3 8 20 2 3 -25 + t - -- + -- + 20 t - 8 t + t 2 t t |
In[11]:= | Conway[Knot[10, 110]][z] |
Out[11]= | 2 4 6 1 - 3 z - 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 110]} |
In[13]:= | {KnotDet[Knot[10, 110]], KnotSignature[Knot[10, 110]]} |
Out[13]= | {83, -2} |
In[14]:= | Jones[Knot[10, 110]][q] |
Out[14]= | -7 3 7 11 13 14 13 2 3 -10 + q - -- + -- - -- + -- - -- + -- + 7 q - 3 q + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 110]} |
In[16]:= | A2Invariant[Knot[10, 110]][q] |
Out[16]= | -22 -18 3 2 -10 3 2 3 2 2 4 6 10 1 + q - q + --- - --- + q - -- + -- - -- + -- - q + 3 q - q + q 16 14 8 6 4 2 q q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 110]][a, z] |
Out[17]= | 2 -2 4 6 2 z 2 2 4 2 6 2 4 2 4 a - a + a - 3 z + -- + a z - 3 a z + a z - 2 z + 2 a z - 2 a 4 4 2 6 > 2 a z + a z |
In[18]:= | Kauffman[Knot[10, 110]][a, z] |
Out[18]= | 2 -2 4 6 z 3 5 2 3 z 2 2 4 2 -a - a - a - - - 3 a z - 6 a z - 4 a z + 2 z + ---- - a z + 6 a z + a 2 a 3 6 2 8 2 6 z 3 3 3 5 3 7 3 4 > 5 a z - a z + ---- + 13 a z + 21 a z + 12 a z - 2 a z + z - a 4 5 3 z 2 4 4 4 6 4 8 4 8 z 5 3 5 > ---- + 8 a z - 4 a z - 7 a z + a z - ---- - 19 a z - 27 a z - 2 a a 6 7 5 5 7 5 6 z 2 6 4 6 6 6 3 z > 13 a z + 3 a z - 8 z + -- - 20 a z - 5 a z + 6 a z + ---- + 2 a a 7 3 7 5 7 8 2 8 4 8 9 3 9 > 4 a z + 9 a z + 8 a z + 4 z + 10 a z + 6 a z + 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[10, 110]], Vassiliev[3][Knot[10, 110]]} |
Out[19]= | {-3, 3} |
In[20]:= | Kh[Knot[10, 110]][q, t] |
Out[20]= | 6 8 1 2 1 5 2 6 5 7 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 6 7 7 5 t 2 3 2 3 3 5 3 > ----- + ---- + ---- + --- + 5 q t + 2 q t + 5 q t + q t + 2 q t + 5 2 5 3 q q t q t q t 7 4 > q t |
In[21]:= | ColouredJones[Knot[10, 110], 2][q] |
Out[21]= | -20 3 3 5 19 17 21 64 38 63 124 42 -35 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- + -- + 19 18 17 16 15 14 13 12 11 10 9 q q q q q q q q q q q 114 158 22 144 147 10 139 101 2 3 > --- - --- + -- + --- - --- - -- + --- - --- + 101 q - 44 q - 37 q + 8 7 6 5 4 3 2 q q q q q q q q 4 5 6 7 8 9 10 > 48 q - 7 q - 18 q + 11 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10110 |
|