© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10109Visit 10109's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10109's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X10,4,11,3 X18,11,19,12 X16,7,17,8 X8,17,9,18 X20,15,1,16 X12,19,13,20 X14,6,15,5 X2,10,3,9 X4,14,5,13 |
Gauss Code: | {1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 10, -8, 6, -4, 5, -3, 7, -6} |
DT (Dowker-Thistlethwaite) Code: | 6 10 14 16 2 18 4 20 8 12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-4 - 4t-3 + 10t-2 - 17t-1 + 21 - 17t + 10t2 - 4t3 + t4 |
Conway Polynomial: | 1 + 3z2 + 6z4 + 4z6 + z8 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {85, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 7q-3 + 11q-2 - 13q-1 + 15 - 13q + 11q2 - 7q3 + 3q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1081, ...} |
A2 (sl(3)) Invariant: | - q-14 + q-12 - 3q-10 + q-8 - q-4 + 5q-2 - 1 + 5q2 - q4 + q8 - 3q10 + q12 - q14 |
HOMFLY-PT Polynomial: | - 3a-2 - 6a-2z2 - 4a-2z4 - a-2z6 + 7 + 15z2 + 14z4 + 6z6 + z8 - 3a2 - 6a2z2 - 4a2z4 - a2z6 |
Kauffman Polynomial: | a-5z - 2a-5z3 + a-5z5 + 2a-4z2 - 5a-4z4 + 3a-4z6 - a-3z + 4a-3z3 - 8a-3z5 + 5a-3z7 + 3a-2 - 7a-2z2 + 6a-2z4 - 7a-2z6 + 5a-2z8 - 5a-1z + 13a-1z3 - 16a-1z5 + 6a-1z7 + 2a-1z9 + 7 - 18z2 + 22z4 - 20z6 + 10z8 - 5az + 13az3 - 16az5 + 6az7 + 2az9 + 3a2 - 7a2z2 + 6a2z4 - 7a2z6 + 5a2z8 - a3z + 4a3z3 - 8a3z5 + 5a3z7 + 2a4z2 - 5a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {3, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10109. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + 2q-13 + 8q-12 - 20q-11 + 6q-10 + 40q-9 - 60q-8 - 7q-7 + 105q-6 - 98q-5 - 45q-4 + 169q-3 - 108q-2 - 87q-1 + 195 - 87q - 108q2 + 169q3 - 45q4 - 98q5 + 105q6 - 7q7 - 60q8 + 40q9 + 6q10 - 20q11 + 8q12 + 2q13 - 3q14 + q15 |
3 | - q-30 + 3q-29 - 2q-28 - 3q-27 + q-26 + 13q-25 - 7q-24 - 30q-23 + 11q-22 + 70q-21 - 10q-20 - 133q-19 - 27q-18 + 235q-17 + 97q-16 - 333q-15 - 237q-14 + 421q-13 + 429q-12 - 474q-11 - 643q-10 + 462q-9 + 870q-8 - 412q-7 - 1055q-6 + 306q-5 + 1216q-4 - 203q-3 - 1289q-2 + 57q-1 + 1337 + 57q - 1289q2 - 203q3 + 1216q4 + 306q5 - 1055q6 - 412q7 + 870q8 + 462q9 - 643q10 - 474q11 + 429q12 + 421q13 - 237q14 - 333q15 + 97q16 + 235q17 - 27q18 - 133q19 - 10q20 + 70q21 + 11q22 - 30q23 - 7q24 + 13q25 + q26 - 3q27 - 2q28 + 3q29 - q30 |
4 | q-50 - 3q-49 + 2q-48 + 3q-47 - 6q-46 + 6q-45 - 12q-44 + 13q-43 + 19q-42 - 37q-41 + 3q-40 - 45q-39 + 75q-38 + 125q-37 - 109q-36 - 108q-35 - 259q-34 + 211q-33 + 581q-32 + 37q-31 - 351q-30 - 1131q-29 - 41q-28 + 1474q-27 + 1097q-26 - 23q-25 - 2765q-24 - 1618q-23 + 1862q-22 + 3157q-21 + 1998q-20 - 4013q-19 - 4524q-18 + 507q-17 + 4939q-16 + 5545q-15 - 3595q-14 - 7303q-13 - 2387q-12 + 5220q-11 + 9051q-10 - 1716q-9 - 8692q-8 - 5391q-7 + 4146q-6 + 11245q-5 + 514q-4 - 8632q-3 - 7516q-2 + 2477q-1 + 11939 + 2477q - 7516q2 - 8632q3 + 514q4 + 11245q5 + 4146q6 - 5391q7 - 8692q8 - 1716q9 + 9051q10 + 5220q11 - 2387q12 - 7303q13 - 3595q14 + 5545q15 + 4939q16 + 507q17 - 4524q18 - 4013q19 + 1998q20 + 3157q21 + 1862q22 - 1618q23 - 2765q24 - 23q25 + 1097q26 + 1474q27 - 41q28 - 1131q29 - 351q30 + 37q31 + 581q32 + 211q33 - 259q34 - 108q35 - 109q36 + 125q37 + 75q38 - 45q39 + 3q40 - 37q41 + 19q42 + 13q43 - 12q44 + 6q45 - 6q46 + 3q47 + 2q48 - 3q49 + q50 |
5 | - q-75 + 3q-74 - 2q-73 - 3q-72 + 6q-71 - q-70 - 7q-69 + 6q-68 - 2q-67 - 9q-66 + 24q-65 + 16q-64 - 31q-63 - 29q-62 - 34q-61 - 3q-60 + 117q-59 + 164q-58 + 7q-57 - 240q-56 - 397q-55 - 243q-54 + 366q-53 + 945q-52 + 822q-51 - 266q-50 - 1712q-49 - 2127q-48 - 494q-47 + 2443q-46 + 4250q-45 + 2631q-44 - 2417q-43 - 7114q-42 - 6512q-41 + 594q-40 + 9625q-39 + 12430q-38 + 4136q-37 - 10696q-36 - 19448q-35 - 12146q-34 + 8453q-33 + 26148q-32 + 23290q-31 - 2075q-30 - 30685q-29 - 35998q-28 - 8638q-27 + 31341q-26 + 48438q-25 + 22835q-24 - 27631q-23 - 58682q-22 - 38496q-21 + 19719q-20 + 65298q-19 + 53987q-18 - 9004q-17 - 68162q-16 - 67224q-15 - 3092q-14 + 67469q-13 + 77778q-12 + 14812q-11 - 64396q-10 - 84931q-9 - 25496q-8 + 59690q-7 + 89713q-6 + 34344q-5 - 54379q-4 - 91894q-3 - 42017q-2 + 48392q-1 + 92885 + 48392q - 42017q2 - 91894q3 - 54379q4 + 34344q5 + 89713q6 + 59690q7 - 25496q8 - 84931q9 - 64396q10 + 14812q11 + 77778q12 + 67469q13 - 3092q14 - 67224q15 - 68162q16 - 9004q17 + 53987q18 + 65298q19 + 19719q20 - 38496q21 - 58682q22 - 27631q23 + 22835q24 + 48438q25 + 31341q26 - 8638q27 - 35998q28 - 30685q29 - 2075q30 + 23290q31 + 26148q32 + 8453q33 - 12146q34 - 19448q35 - 10696q36 + 4136q37 + 12430q38 + 9625q39 + 594q40 - 6512q41 - 7114q42 - 2417q43 + 2631q44 + 4250q45 + 2443q46 - 494q47 - 2127q48 - 1712q49 - 266q50 + 822q51 + 945q52 + 366q53 - 243q54 - 397q55 - 240q56 + 7q57 + 164q58 + 117q59 - 3q60 - 34q61 - 29q62 - 31q63 + 16q64 + 24q65 - 9q66 - 2q67 + 6q68 - 7q69 - q70 + 6q71 - 3q72 - 2q73 + 3q74 - q75 |
6 | q-105 - 3q-104 + 2q-103 + 3q-102 - 6q-101 + q-100 + 2q-99 + 13q-98 - 17q-97 - 8q-96 + 22q-95 - 27q-94 + 21q-92 + 71q-91 - 34q-90 - 75q-89 + 16q-88 - 129q-87 - 36q-86 + 126q-85 + 400q-84 + 145q-83 - 158q-82 - 208q-81 - 865q-80 - 703q-79 + 55q-78 + 1611q-77 + 1858q-76 + 1210q-75 + 101q-74 - 3327q-73 - 4931q-72 - 3798q-71 + 1805q-70 + 6774q-69 + 9727q-68 + 8450q-67 - 2638q-66 - 14630q-65 - 21452q-64 - 13030q-63 + 4180q-62 + 26230q-61 + 40159q-60 + 25383q-59 - 9352q-58 - 50139q-57 - 63640q-56 - 43374q-55 + 15871q-54 + 84539q-53 + 105774q-52 + 63311q-51 - 36248q-50 - 126670q-49 - 161655q-48 - 88027q-47 + 66592q-46 + 197978q-45 + 224393q-44 + 97674q-43 - 106500q-42 - 289269q-41 - 295599q-40 - 95461q-39 + 189377q-38 + 390494q-37 + 345386q-36 + 74611q-35 - 302530q-34 - 502861q-33 - 374848q-32 + 13010q-31 + 434079q-30 + 586654q-29 + 368325q-28 - 149880q-27 - 585134q-26 - 640685q-25 - 265026q-24 + 320369q-23 + 705269q-22 + 640606q-21 + 91283q-20 - 522554q-19 - 789043q-18 - 516704q-17 + 130277q-16 + 693197q-15 + 803318q-14 + 306604q-13 - 392185q-12 - 820783q-11 - 673048q-10 - 40674q-9 + 619164q-8 + 865087q-7 + 447497q-6 - 268553q-5 - 795142q-4 - 750697q-3 - 163412q-2 + 538093q-1 + 877141 + 538093q - 163412q2 - 750697q3 - 795142q4 - 268553q5 + 447497q6 + 865087q7 + 619164q8 - 40674q9 - 673048q10 - 820783q11 - 392185q12 + 306604q13 + 803318q14 + 693197q15 + 130277q16 - 516704q17 - 789043q18 - 522554q19 + 91283q20 + 640606q21 + 705269q22 + 320369q23 - 265026q24 - 640685q25 - 585134q26 - 149880q27 + 368325q28 + 586654q29 + 434079q30 + 13010q31 - 374848q32 - 502861q33 - 302530q34 + 74611q35 + 345386q36 + 390494q37 + 189377q38 - 95461q39 - 295599q40 - 289269q41 - 106500q42 + 97674q43 + 224393q44 + 197978q45 + 66592q46 - 88027q47 - 161655q48 - 126670q49 - 36248q50 + 63311q51 + 105774q52 + 84539q53 + 15871q54 - 43374q55 - 63640q56 - 50139q57 - 9352q58 + 25383q59 + 40159q60 + 26230q61 + 4180q62 - 13030q63 - 21452q64 - 14630q65 - 2638q66 + 8450q67 + 9727q68 + 6774q69 + 1805q70 - 3798q71 - 4931q72 - 3327q73 + 101q74 + 1210q75 + 1858q76 + 1611q77 + 55q78 - 703q79 - 865q80 - 208q81 - 158q82 + 145q83 + 400q84 + 126q85 - 36q86 - 129q87 + 16q88 - 75q89 - 34q90 + 71q91 + 21q92 - 27q94 + 22q95 - 8q96 - 17q97 + 13q98 + 2q99 + q100 - 6q101 + 3q102 + 2q103 - 3q104 + q105 |
7 | - q-140 + 3q-139 - 2q-138 - 3q-137 + 6q-136 - q-135 - 2q-134 - 8q-133 - 2q-132 + 27q-131 - 5q-130 - 19q-129 + 11q-128 - 6q-127 - 3q-126 - 39q-125 - 21q-124 + 123q-123 + 54q-122 - 28q-121 - 19q-120 - 113q-119 - 83q-118 - 202q-117 - 127q-116 + 423q-115 + 523q-114 + 433q-113 + 187q-112 - 528q-111 - 932q-110 - 1542q-109 - 1445q-108 + 481q-107 + 2262q-106 + 3828q-105 + 3942q-104 + 1189q-103 - 2557q-102 - 7683q-101 - 10796q-100 - 7503q-99 + 356q-98 + 12216q-97 + 22258q-96 + 22340q-95 + 11840q-94 - 11241q-93 - 37619q-92 - 50791q-91 - 43098q-90 - 6817q-89 + 46720q-88 + 90727q-87 + 103530q-86 + 62047q-85 - 27592q-84 - 127434q-83 - 194314q-82 - 174586q-81 - 54007q-80 + 125828q-79 + 294953q-78 + 350927q-77 + 235030q-76 - 29753q-75 - 353701q-74 - 569223q-73 - 535658q-72 - 219825q-71 + 291598q-70 + 761077q-69 + 932844q-68 + 663707q-67 - 16844q-66 - 821391q-65 - 1351760q-64 - 1288831q-63 - 532987q-62 + 629230q-61 + 1660551q-60 + 2013990q-59 + 1366120q-58 - 89043q-57 - 1713017q-56 - 2697937q-55 - 2404293q-54 - 825147q-53 + 1383588q-52 + 3167221q-51 + 3501745q-50 + 2054700q-49 - 619529q-48 - 3275526q-47 - 4475059q-46 - 3455196q-45 - 538986q-44 + 2940592q-43 + 5154249q-42 + 4842520q-41 + 1968432q-40 - 2175340q-39 - 5435305q-38 - 6036651q-37 - 3489453q-36 + 1077612q-35 + 5294987q-34 + 6908832q-33 + 4926397q-32 + 200479q-31 - 4798379q-30 - 7408002q-29 - 6137036q-28 - 1494262q-27 + 4059766q-26 + 7557368q-25 + 7049027q-24 + 2668753q-23 - 3217285q-22 - 7435250q-21 - 7652071q-20 - 3640243q-19 + 2387724q-18 + 7144243q-17 + 7993632q-16 + 4380913q-15 - 1655058q-14 - 6781116q-13 - 8143362q-12 - 4913199q-11 + 1050675q-10 + 6420493q-9 + 8184351q-8 + 5287929q-7 - 573356q-6 - 6100215q-5 - 8177528q-4 - 5571466q-3 + 179641q-2 + 5825888q-1 + 8172629 + 5825888q + 179641q2 - 5571466q3 - 8177528q4 - 6100215q5 - 573356q6 + 5287929q7 + 8184351q8 + 6420493q9 + 1050675q10 - 4913199q11 - 8143362q12 - 6781116q13 - 1655058q14 + 4380913q15 + 7993632q16 + 7144243q17 + 2387724q18 - 3640243q19 - 7652071q20 - 7435250q21 - 3217285q22 + 2668753q23 + 7049027q24 + 7557368q25 + 4059766q26 - 1494262q27 - 6137036q28 - 7408002q29 - 4798379q30 + 200479q31 + 4926397q32 + 6908832q33 + 5294987q34 + 1077612q35 - 3489453q36 - 6036651q37 - 5435305q38 - 2175340q39 + 1968432q40 + 4842520q41 + 5154249q42 + 2940592q43 - 538986q44 - 3455196q45 - 4475059q46 - 3275526q47 - 619529q48 + 2054700q49 + 3501745q50 + 3167221q51 + 1383588q52 - 825147q53 - 2404293q54 - 2697937q55 - 1713017q56 - 89043q57 + 1366120q58 + 2013990q59 + 1660551q60 + 629230q61 - 532987q62 - 1288831q63 - 1351760q64 - 821391q65 - 16844q66 + 663707q67 + 932844q68 + 761077q69 + 291598q70 - 219825q71 - 535658q72 - 569223q73 - 353701q74 - 29753q75 + 235030q76 + 350927q77 + 294953q78 + 125828q79 - 54007q80 - 174586q81 - 194314q82 - 127434q83 - 27592q84 + 62047q85 + 103530q86 + 90727q87 + 46720q88 - 6817q89 - 43098q90 - 50791q91 - 37619q92 - 11241q93 + 11840q94 + 22340q95 + 22258q96 + 12216q97 + 356q98 - 7503q99 - 10796q100 - 7683q101 - 2557q102 + 1189q103 + 3942q104 + 3828q105 + 2262q106 + 481q107 - 1445q108 - 1542q109 - 932q110 - 528q111 + 187q112 + 433q113 + 523q114 + 423q115 - 127q116 - 202q117 - 83q118 - 113q119 - 19q120 - 28q121 + 54q122 + 123q123 - 21q124 - 39q125 - 3q126 - 6q127 + 11q128 - 19q129 - 5q130 + 27q131 - 2q132 - 8q133 - 2q134 - q135 + 6q136 - 3q137 - 2q138 + 3q139 - q140 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 109]] |
Out[2]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[18, 11, 19, 12], X[16, 7, 17, 8], > X[8, 17, 9, 18], X[20, 15, 1, 16], X[12, 19, 13, 20], X[14, 6, 15, 5], > X[2, 10, 3, 9], X[4, 14, 5, 13]] |
In[3]:= | GaussCode[Knot[10, 109]] |
Out[3]= | GaussCode[1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 10, -8, 6, -4, 5, -3, 7, > -6] |
In[4]:= | DTCode[Knot[10, 109]] |
Out[4]= | DTCode[6, 10, 14, 16, 2, 18, 4, 20, 8, 12] |
In[5]:= | br = BR[Knot[10, 109]] |
Out[5]= | BR[3, {-1, -1, 2, -1, 2, 2, -1, -1, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 109]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 109]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 109]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {NegativeAmphicheiral, 2, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 109]][t] |
Out[10]= | -4 4 10 17 2 3 4 21 + t - -- + -- - -- - 17 t + 10 t - 4 t + t 3 2 t t t |
In[11]:= | Conway[Knot[10, 109]][z] |
Out[11]= | 2 4 6 8 1 + 3 z + 6 z + 4 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 109]} |
In[13]:= | {KnotDet[Knot[10, 109]], KnotSignature[Knot[10, 109]]} |
Out[13]= | {85, 0} |
In[14]:= | Jones[Knot[10, 109]][q] |
Out[14]= | -5 3 7 11 13 2 3 4 5 15 - q + -- - -- + -- - -- - 13 q + 11 q - 7 q + 3 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 81], Knot[10, 109]} |
In[16]:= | A2Invariant[Knot[10, 109]][q] |
Out[16]= | -14 -12 3 -8 -4 5 2 4 8 10 12 14 -1 - q + q - --- + q - q + -- + 5 q - q + q - 3 q + q - q 10 2 q q |
In[17]:= | HOMFLYPT[Knot[10, 109]][a, z] |
Out[17]= | 2 4 6 3 2 2 6 z 2 2 4 4 z 2 4 6 z 7 - -- - 3 a + 15 z - ---- - 6 a z + 14 z - ---- - 4 a z + 6 z - -- - 2 2 2 2 a a a a 2 6 8 > a z + z |
In[18]:= | Kauffman[Knot[10, 109]][a, z] |
Out[18]= | 2 2 3 2 z z 5 z 3 5 2 2 z 7 z 7 + -- + 3 a + -- - -- - --- - 5 a z - a z + a z - 18 z + ---- - ---- - 2 5 3 a 4 2 a a a a a 3 3 3 2 2 4 2 2 z 4 z 13 z 3 3 3 5 3 > 7 a z + 2 a z - ---- + ---- + ----- + 13 a z + 4 a z - 2 a z + 5 3 a a a 4 4 5 5 5 4 5 z 6 z 2 4 4 4 z 8 z 16 z 5 > 22 z - ---- + ---- + 6 a z - 5 a z + -- - ---- - ----- - 16 a z - 4 2 5 3 a a a a a 6 6 7 7 3 5 5 5 6 3 z 7 z 2 6 4 6 5 z 6 z > 8 a z + a z - 20 z + ---- - ---- - 7 a z + 3 a z + ---- + ---- + 4 2 3 a a a a 8 9 7 3 7 8 5 z 2 8 2 z 9 > 6 a z + 5 a z + 10 z + ---- + 5 a z + ---- + 2 a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 109]], Vassiliev[3][Knot[10, 109]]} |
Out[19]= | {3, 0} |
In[20]:= | Kh[Knot[10, 109]][q, t] |
Out[20]= | 8 1 2 1 5 2 6 5 7 6 - + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 7 4 9 4 > 6 q t + 7 q t + 5 q t + 6 q t + 2 q t + 5 q t + q t + 2 q t + 11 5 > q t |
In[21]:= | ColouredJones[Knot[10, 109], 2][q] |
Out[21]= | -15 3 2 8 20 6 40 60 7 105 98 45 169 195 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - -- - -- + --- - 14 13 12 11 10 9 8 7 6 5 4 3 q q q q q q q q q q q q 108 87 2 3 4 5 6 7 8 > --- - -- - 87 q - 108 q + 169 q - 45 q - 98 q + 105 q - 7 q - 60 q + 2 q q 9 10 11 12 13 14 15 > 40 q + 6 q - 20 q + 8 q + 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10109 |
|