© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10108Visit 10108's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10108's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X16,4,17,3 X20,13,1,14 X14,7,15,8 X8,19,9,20 X18,9,19,10 X10,17,11,18 X12,6,13,5 X4,12,5,11 X2,16,3,15 |
Gauss Code: | {1, -10, 2, -9, 8, -1, 4, -5, 6, -7, 9, -8, 3, -4, 10, -2, 7, -6, 5, -3} |
DT (Dowker-Thistlethwaite) Code: | 6 16 12 14 18 4 20 2 10 8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-3 - 8t-2 + 14t-1 - 15 + 14t - 8t2 + 2t3 |
Conway Polynomial: | 1 + 4z4 + 2z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n161, ...} |
Determinant and Signature: | {63, 2} |
Jones Polynomial: | - q-4 + 3q-3 - 5q-2 + 8q-1 - 9 + 10q - 10q2 + 8q3 - 5q4 + 3q5 - q6 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-12 + q-10 + 2q-4 - q-2 + 2 - q4 + q6 - 2q8 + 2q10 + q16 - q18 |
HOMFLY-PT Polynomial: | - 2a-4z2 - a-4z4 + 2a-2z2 + 3a-2z4 + a-2z6 + 1 + 2z2 + 3z4 + z6 - 2a2z2 - a2z4 |
Kauffman Polynomial: | a-7z3 - a-6z2 + 3a-6z4 - 3a-5z3 + 5a-5z5 + 2a-4z2 - 9a-4z4 + 7a-4z6 - 2a-3z + 10a-3z3 - 17a-3z5 + 8a-3z7 + 4a-2z4 - 13a-2z6 + 6a-2z8 - 6a-1z + 28a-1z3 - 29a-1z5 + 4a-1z7 + 2a-1z9 + 1 - 10z2 + 33z4 - 33z6 + 9z8 - 6az + 19az3 - 11az5 - 3az7 + 2az9 - 7a2z2 + 17a2z4 - 13a2z6 + 3a2z8 - 2a3z + 5a3z3 - 4a3z5 + a3z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 10108. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-13 - 3q-12 - q-11 + 11q-10 - 9q-9 - 14q-8 + 30q-7 - 5q-6 - 39q-5 + 43q-4 + 11q-3 - 62q-2 + 42q-1 + 32 - 73q + 30q2 + 47q3 - 67q4 + 13q5 + 47q6 - 47q7 + 2q8 + 30q9 - 25q10 + 3q11 + 11q12 - 11q13 + 4q14 + 2q15 - 3q16 + q17 |
3 | - q-27 + 3q-26 + q-25 - 5q-24 - 9q-23 + 9q-22 + 23q-21 - 6q-20 - 42q-19 - 12q-18 + 61q-17 + 43q-16 - 66q-15 - 84q-14 + 53q-13 + 121q-12 - 16q-11 - 151q-10 - 25q-9 + 150q-8 + 82q-7 - 143q-6 - 122q-5 + 109q-4 + 164q-3 - 77q-2 - 183q-1 + 26 + 208q + 17q2 - 213q3 - 70q4 + 215q5 + 118q6 - 201q7 - 162q8 + 172q9 + 191q10 - 132q11 - 195q12 + 85q13 + 173q14 - 38q15 - 138q16 + 13q17 + 87q18 + 5q19 - 49q20 - 4q21 + 17q22 + 5q23 - 6q24 + q25 - 3q26 + 4q28 - q29 - q30 - 2q31 + 3q32 - q33 |
4 | q-46 - 3q-45 - q-44 + 5q-43 + 3q-42 + 9q-41 - 19q-40 - 21q-39 + 4q-38 + 18q-37 + 73q-36 - 14q-35 - 74q-34 - 74q-33 - 42q-32 + 187q-31 + 115q-30 - 7q-29 - 172q-28 - 300q-27 + 124q-26 + 236q-25 + 292q-24 + 6q-23 - 524q-22 - 198q-21 - q-20 + 502q-19 + 483q-18 - 332q-17 - 387q-16 - 554q-15 + 242q-14 + 809q-13 + 194q-12 - 95q-11 - 956q-10 - 359q-9 + 661q-8 + 618q-7 + 529q-6 - 939q-5 - 909q-4 + 187q-3 + 742q-2 + 1137q-1 - 652 - 1247q - 333q2 + 693q3 + 1618q4 - 298q5 - 1481q6 - 834q7 + 598q8 + 2033q9 + 126q10 - 1617q11 - 1355q12 + 340q13 + 2278q14 + 680q15 - 1424q16 - 1718q17 - 173q18 + 2043q19 + 1118q20 - 804q21 - 1564q22 - 646q23 + 1304q24 + 1062q25 - 157q26 - 932q27 - 686q28 + 548q29 + 600q30 + 107q31 - 329q32 - 406q33 + 166q34 + 196q35 + 77q36 - 55q37 - 159q38 + 58q39 + 30q40 + 20q41 + 6q42 - 52q43 + 26q44 - q45 + 3q46 + 6q47 - 15q48 + 8q49 - 2q50 + q51 + 2q52 - 3q53 + q54 |
5 | - q-70 + 3q-69 + q-68 - 5q-67 - 3q-66 - 3q-65 + q-64 + 17q-63 + 24q-62 - 6q-61 - 31q-60 - 48q-59 - 40q-58 + 26q-57 + 112q-56 + 122q-55 + 24q-54 - 122q-53 - 241q-52 - 203q-51 + 42q-50 + 337q-49 + 433q-48 + 212q-47 - 233q-46 - 641q-45 - 634q-44 - 112q-43 + 611q-42 + 1013q-41 + 727q-40 - 177q-39 - 1133q-38 - 1384q-37 - 636q-36 + 727q-35 + 1758q-34 + 1622q-33 + 240q-32 - 1523q-31 - 2404q-30 - 1580q-29 + 587q-28 + 2568q-27 + 2843q-26 + 1000q-25 - 1900q-24 - 3680q-23 - 2757q-22 + 437q-21 + 3624q-20 + 4338q-19 + 1614q-18 - 2755q-17 - 5278q-16 - 3732q-15 + 1027q-14 + 5432q-13 + 5663q-12 + 1077q-11 - 4775q-10 - 7002q-9 - 3373q-8 + 3519q-7 + 7779q-6 + 5414q-5 - 1886q-4 - 7951q-3 - 7191q-2 + 201q-1 + 7784 + 8515q + 1392q2 - 7381q3 - 9620q4 - 2763q5 + 7043q6 + 10498q7 + 3968q8 - 6748q9 - 11423q10 - 5111q11 + 6554q12 + 12398q13 + 6350q14 - 6263q15 - 13395q16 - 7799q17 + 5636q18 + 14225q19 + 9456q20 - 4520q21 - 14553q22 - 11063q23 + 2765q24 + 14075q25 + 12362q26 - 612q27 - 12675q28 - 12858q29 - 1604q30 + 10374q31 + 12407q32 + 3439q33 - 7654q34 - 10951q35 - 4481q36 + 4912q37 + 8806q38 + 4693q39 - 2673q40 - 6440q41 - 4137q42 + 1094q43 + 4288q44 + 3200q45 - 246q46 - 2577q47 - 2183q48 - 140q49 + 1442q50 + 1349q51 + 169q52 - 724q53 - 729q54 - 152q55 + 350q56 + 378q57 + 71q58 - 168q59 - 158q60 - 26q61 + 65q62 + 65q63 + 13q64 - 37q65 - 28q66 + 15q67 + 12q68 - 3q69 + 5q70 - 9q71 - 6q72 + 9q73 + 3q74 - 5q75 + 2q76 - q77 - 2q78 + 3q79 - q80 |
6 | q-99 - 3q-98 - q-97 + 5q-96 + 3q-95 + 3q-94 - 7q-93 + q-92 - 20q-91 - 22q-90 + 18q-89 + 32q-88 + 54q-87 + 17q-86 + 24q-85 - 86q-84 - 160q-83 - 102q-82 - 15q-81 + 166q-80 + 225q-79 + 389q-78 + 110q-77 - 256q-76 - 520q-75 - 642q-74 - 356q-73 + 22q-72 + 997q-71 + 1172q-70 + 900q-69 + 74q-68 - 1032q-67 - 1818q-66 - 2135q-65 - 477q-64 + 1015q-63 + 2648q-62 + 3043q-61 + 2026q-60 - 444q-59 - 3701q-58 - 4309q-57 - 3828q-56 - 539q-55 + 3254q-54 + 6486q-53 + 6356q-52 + 2047q-51 - 2526q-50 - 7892q-49 - 8909q-48 - 5920q-47 + 1870q-46 + 9093q-45 + 11599q-44 + 9795q-43 + 653q-42 - 9093q-41 - 16202q-40 - 13447q-39 - 3753q-38 + 8574q-37 + 19433q-36 + 18881q-35 + 8435q-34 - 9668q-33 - 21983q-32 - 24182q-31 - 13154q-30 + 8683q-29 + 26259q-28 + 30926q-27 + 15632q-26 - 7793q-25 - 30257q-24 - 37102q-23 - 20087q-22 + 9674q-21 + 36660q-20 + 40860q-19 + 23013q-18 - 12262q-17 - 43104q-16 - 47116q-15 - 21990q-14 + 19289q-13 + 48281q-12 + 51100q-11 + 19166q-10 - 27811q-9 - 57425q-8 - 50697q-7 - 9827q-6 + 36874q-5 + 64244q-4 + 47771q-3 - 2564q-2 - 51600q-1 - 66601 - 36353q + 17438q2 + 64028q3 + 65590q4 + 20066q5 - 39619q6 - 71787q7 - 53786q8 + 948q9 + 59566q10 + 75008q11 + 34853q12 - 30977q13 - 74653q14 - 64998q15 - 8820q16 + 58906q17 + 84006q18 + 45793q19 - 27420q20 - 81755q21 - 78153q22 - 17903q23 + 61125q24 + 97531q25 + 61840q26 - 20008q27 - 88864q28 - 96530q29 - 36325q30 + 54096q31 + 107686q32 + 84205q33 + 1832q34 - 80956q35 - 108472q36 - 62409q37 + 27996q38 + 97537q39 + 97465q40 + 32363q41 - 50565q42 - 96492q43 - 77209q44 - 6489q45 + 63530q46 + 84951q47 + 49816q48 - 13345q49 - 61777q50 - 66239q51 - 26293q52 + 25440q53 + 52636q54 + 42949q55 + 8130q56 - 26368q57 - 39357q58 - 24102q59 + 3544q60 + 22592q61 + 23970q62 + 10371q63 - 6740q64 - 16513q65 - 12759q66 - 1874q67 + 6757q68 + 9172q69 + 5346q70 - 720q71 - 5207q72 - 4487q73 - 1118q74 + 1501q75 + 2547q76 + 1687q77 + 122q78 - 1401q79 - 1128q80 - 209q81 + 269q82 + 542q83 + 356q84 + 86q85 - 366q86 - 203q87 + 30q88 + 27q89 + 87q90 + 39q91 + 41q92 - 95q93 - 14q94 + 33q95 - 12q96 + 10q97 - 9q98 + 19q99 - 22q100 + 5q101 + 12q102 - 9q103 + 3q104 - 6q105 + 5q106 - 2q107 + q108 + 2q109 - 3q110 + q111 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 108]] |
Out[2]= | PD[X[6, 2, 7, 1], X[16, 4, 17, 3], X[20, 13, 1, 14], X[14, 7, 15, 8], > X[8, 19, 9, 20], X[18, 9, 19, 10], X[10, 17, 11, 18], X[12, 6, 13, 5], > X[4, 12, 5, 11], X[2, 16, 3, 15]] |
In[3]:= | GaussCode[Knot[10, 108]] |
Out[3]= | GaussCode[1, -10, 2, -9, 8, -1, 4, -5, 6, -7, 9, -8, 3, -4, 10, -2, 7, -6, 5, > -3] |
In[4]:= | DTCode[Knot[10, 108]] |
Out[4]= | DTCode[6, 16, 12, 14, 18, 4, 20, 2, 10, 8] |
In[5]:= | br = BR[Knot[10, 108]] |
Out[5]= | BR[4, {1, 1, -2, 1, 1, 3, -2, 1, -2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 108]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 108]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 108]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 108]][t] |
Out[10]= | 2 8 14 2 3 -15 + -- - -- + -- + 14 t - 8 t + 2 t 3 2 t t t |
In[11]:= | Conway[Knot[10, 108]][z] |
Out[11]= | 4 6 1 + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 108], Knot[11, NonAlternating, 161]} |
In[13]:= | {KnotDet[Knot[10, 108]], KnotSignature[Knot[10, 108]]} |
Out[13]= | {63, 2} |
In[14]:= | Jones[Knot[10, 108]][q] |
Out[14]= | -4 3 5 8 2 3 4 5 6 -9 - q + -- - -- + - + 10 q - 10 q + 8 q - 5 q + 3 q - q 3 2 q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 108]} |
In[16]:= | A2Invariant[Knot[10, 108]][q] |
Out[16]= | -12 -10 2 -2 4 6 8 10 16 18 2 - q + q + -- - q - q + q - 2 q + 2 q + q - q 4 q |
In[17]:= | HOMFLYPT[Knot[10, 108]][a, z] |
Out[17]= | 2 2 4 4 6 2 2 z 2 z 2 2 4 z 3 z 2 4 6 z 1 + 2 z - ---- + ---- - 2 a z + 3 z - -- + ---- - a z + z + -- 4 2 4 2 2 a a a a a |
In[18]:= | Kauffman[Knot[10, 108]][a, z] |
Out[18]= | 2 2 3 3 2 z 6 z 3 2 z 2 z 2 2 z 3 z 1 - --- - --- - 6 a z - 2 a z - 10 z - -- + ---- - 7 a z + -- - ---- + 3 a 6 4 7 5 a a a a a 3 3 4 4 4 10 z 28 z 3 3 3 4 3 z 9 z 4 z 2 4 > ----- + ----- + 19 a z + 5 a z + 33 z + ---- - ---- + ---- + 17 a z + 3 a 6 4 2 a a a a 5 5 5 6 6 5 z 17 z 29 z 5 3 5 6 7 z 13 z > ---- - ----- - ----- - 11 a z - 4 a z - 33 z + ---- - ----- - 5 3 a 4 2 a a a a 7 7 8 9 2 6 8 z 4 z 7 3 7 8 6 z 2 8 2 z > 13 a z + ---- + ---- - 3 a z + a z + 9 z + ---- + 3 a z + ---- + 3 a 2 a a a 9 > 2 a z |
In[19]:= | {Vassiliev[2][Knot[10, 108]], Vassiliev[3][Knot[10, 108]]} |
Out[19]= | {0, 0} |
In[20]:= | Kh[Knot[10, 108]][q, t] |
Out[20]= | 3 1 2 1 3 2 5 3 4 5 q 6 q + 5 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 9 5 7 4 5 4 5 3 3 3 3 2 2 q t t q t q t q t q t q t q t q t 3 5 5 2 7 2 7 3 9 3 9 4 > 5 q t + 5 q t + 3 q t + 5 q t + 2 q t + 3 q t + q t + 11 4 13 5 > 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 108], 2][q] |
Out[21]= | -13 3 -11 11 9 14 30 5 39 43 11 62 42 32 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + -- - 12 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q 2 3 4 5 6 7 8 9 > 73 q + 30 q + 47 q - 67 q + 13 q + 47 q - 47 q + 2 q + 30 q - 10 11 12 13 14 15 16 17 > 25 q + 3 q + 11 q - 11 q + 4 q + 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10108 |
|