© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10107Visit 10107's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10107's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,12,4,13 X7,14,8,15 X9,19,10,18 X19,7,20,6 X5,17,6,16 X17,11,18,10 X13,8,14,9 X15,1,16,20 X11,2,12,3 |
Gauss Code: | {-1, 10, -2, 1, -6, 5, -3, 8, -4, 7, -10, 2, -8, 3, -9, 6, -7, 4, -5, 9} |
DT (Dowker-Thistlethwaite) Code: | 4 12 16 14 18 2 8 20 10 6 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 8t-2 - 22t-1 + 31 - 22t + 8t2 - t3 |
Conway Polynomial: | 1 + z2 + 2z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {93, 0} |
Jones Polynomial: | - q-5 + 4q-4 - 8q-3 + 12q-2 - 15q-1 + 16 - 14q + 12q2 - 7q3 + 3q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 + q-14 + 2q-12 - 3q-10 + 2q-8 - q-6 - 2q-4 + 3q-2 - 2 + 4q2 - q4 + q6 + 3q8 - 3q10 + q12 - q16 |
HOMFLY-PT Polynomial: | - a-4 - a-4z2 + 2a-2 + 3a-2z2 + 2a-2z4 - 2z2 - 2z4 - z6 + 2a2z2 + 2a2z4 - a4z2 |
Kauffman Polynomial: | a-5z - 2a-5z3 + a-5z5 - a-4 + 3a-4z2 - 5a-4z4 + 3a-4z6 + 3a-3z3 - 7a-3z5 + 5a-3z7 - 2a-2 + 3a-2z2 - 2a-2z4 - 4a-2z6 + 5a-2z8 - 3a-1z + 15a-1z3 - 22a-1z5 + 9a-1z7 + 2a-1z9 + 5z4 - 16z6 + 11z8 - 3az + 17az3 - 27az5 + 11az7 + 2az9 + 2a2z2 - 4a2z4 - 5a2z6 + 6a2z8 - a3z + 6a3z3 - 12a3z5 + 7a3z7 + 2a4z2 - 6a4z4 + 4a4z6 - a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10107. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 4q-14 + 3q-13 + 12q-12 - 28q-11 + 5q-10 + 57q-9 - 75q-8 - 18q-7 + 137q-6 - 113q-5 - 70q-4 + 209q-3 - 117q-2 - 121q-1 + 232 - 87q - 141q2 + 194q3 - 38q4 - 120q5 + 115q6 - 68q8 + 41q9 + 8q10 - 21q11 + 8q12 + 2q13 - 3q14 + q15 |
3 | - q-30 + 4q-29 - 3q-28 - 7q-27 + 4q-26 + 23q-25 - 6q-24 - 61q-23 + 6q-22 + 120q-21 + 27q-20 - 215q-19 - 106q-18 + 328q-17 + 250q-16 - 428q-15 - 465q-14 + 484q-13 + 736q-12 - 483q-11 - 1018q-10 + 407q-9 + 1282q-8 - 272q-7 - 1499q-6 + 105q-5 + 1648q-4 + 74q-3 - 1712q-2 - 263q-1 + 1713 + 421q - 1614q2 - 584q3 + 1469q4 + 682q5 - 1225q6 - 764q7 + 966q8 + 756q9 - 665q10 - 706q11 + 414q12 + 573q13 - 196q14 - 426q15 + 60q16 + 280q17 - 152q19 - 24q20 + 76q21 + 17q22 - 32q23 - 9q24 + 14q25 + q26 - 3q27 - 2q28 + 3q29 - q30 |
4 | q-50 - 4q-49 + 3q-48 + 7q-47 - 9q-46 + q-45 - 22q-44 + 26q-43 + 54q-42 - 45q-41 - 34q-40 - 133q-39 + 101q-38 + 305q-37 - 17q-36 - 181q-35 - 661q-34 + 39q-33 + 996q-32 + 597q-31 - 111q-30 - 2035q-29 - 1013q-28 + 1706q-27 + 2416q-26 + 1377q-25 - 3702q-24 - 3850q-23 + 904q-22 + 4758q-21 + 5182q-20 - 3896q-19 - 7599q-18 - 2377q-17 + 5740q-16 + 10202q-15 - 1651q-14 - 10208q-13 - 7006q-12 + 4470q-11 + 14263q-10 + 1973q-9 - 10666q-8 - 10982q-7 + 1818q-6 + 16197q-5 + 5386q-4 - 9408q-3 - 13328q-2 - 1101q-1 + 16069 + 7925q - 7011q2 - 13971q3 - 3925q4 + 14012q5 + 9462q6 - 3593q7 - 12745q8 - 6397q9 + 10039q10 + 9469q11 + 286q12 - 9427q13 - 7525q14 + 4989q15 + 7369q16 + 3065q17 - 4885q18 - 6369q19 + 884q20 + 3898q21 + 3436q22 - 1189q23 - 3636q24 - 782q25 + 1043q26 + 2052q27 + 319q28 - 1281q29 - 609q30 - 90q31 + 694q32 + 330q33 - 260q34 - 151q35 - 149q36 + 138q37 + 96q38 - 45q39 - q40 - 42q41 + 21q42 + 15q43 - 13q44 + 6q45 - 6q46 + 3q47 + 2q48 - 3q49 + q50 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 107]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[7, 14, 8, 15], X[9, 19, 10, 18], > X[19, 7, 20, 6], X[5, 17, 6, 16], X[17, 11, 18, 10], X[13, 8, 14, 9], > X[15, 1, 16, 20], X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[10, 107]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -6, 5, -3, 8, -4, 7, -10, 2, -8, 3, -9, 6, -7, 4, -5, > 9] |
In[4]:= | DTCode[Knot[10, 107]] |
Out[4]= | DTCode[4, 12, 16, 14, 18, 2, 8, 20, 10, 6] |
In[5]:= | br = BR[Knot[10, 107]] |
Out[5]= | BR[5, {-1, -1, 2, -1, 3, 2, 2, -4, 3, -2, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 107]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 107]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 107]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 107]][t] |
Out[10]= | -3 8 22 2 3 31 - t + -- - -- - 22 t + 8 t - t 2 t t |
In[11]:= | Conway[Knot[10, 107]][z] |
Out[11]= | 2 4 6 1 + z + 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 107]} |
In[13]:= | {KnotDet[Knot[10, 107]], KnotSignature[Knot[10, 107]]} |
Out[13]= | {93, 0} |
In[14]:= | Jones[Knot[10, 107]][q] |
Out[14]= | -5 4 8 12 15 2 3 4 5 16 - q + -- - -- + -- - -- - 14 q + 12 q - 7 q + 3 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 107]} |
In[16]:= | A2Invariant[Knot[10, 107]][q] |
Out[16]= | -16 -14 2 3 2 -6 2 3 2 4 6 8 -2 - q + q + --- - --- + -- - q - -- + -- + 4 q - q + q + 3 q - 12 10 8 4 2 q q q q q 10 12 16 > 3 q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 107]][a, z] |
Out[17]= | 2 2 4 -4 2 2 z 3 z 2 2 4 2 4 2 z 2 4 6 -a + -- - 2 z - -- + ---- + 2 a z - a z - 2 z + ---- + 2 a z - z 2 4 2 2 a a a a |
In[18]:= | Kauffman[Knot[10, 107]][a, z] |
Out[18]= | 2 2 3 -4 2 z 3 z 3 3 z 3 z 2 2 4 2 2 z -a - -- + -- - --- - 3 a z - a z + ---- + ---- + 2 a z + 2 a z - ---- + 2 5 a 4 2 5 a a a a a 3 3 4 4 3 z 15 z 3 3 3 5 3 4 5 z 2 z 2 4 > ---- + ----- + 17 a z + 6 a z - a z + 5 z - ---- - ---- - 4 a z - 3 a 4 2 a a a 5 5 5 6 4 4 z 7 z 22 z 5 3 5 5 5 6 3 z > 6 a z + -- - ---- - ----- - 27 a z - 12 a z + a z - 16 z + ---- - 5 3 a 4 a a a 6 7 7 8 4 z 2 6 4 6 5 z 9 z 7 3 7 8 5 z > ---- - 5 a z + 4 a z + ---- + ---- + 11 a z + 7 a z + 11 z + ---- + 2 3 a 2 a a a 9 2 8 2 z 9 > 6 a z + ---- + 2 a z a |
In[19]:= | {Vassiliev[2][Knot[10, 107]], Vassiliev[3][Knot[10, 107]]} |
Out[19]= | {1, 1} |
In[20]:= | Kh[Knot[10, 107]][q, t] |
Out[20]= | 8 1 3 1 5 3 7 5 8 7 - + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 7 4 9 4 > 7 q t + 7 q t + 5 q t + 7 q t + 2 q t + 5 q t + q t + 2 q t + 11 5 > q t |
In[21]:= | ColouredJones[Knot[10, 107], 2][q] |
Out[21]= | -15 4 3 12 28 5 57 75 18 137 113 70 232 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - --- - -- + 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q 209 117 121 2 3 4 5 6 > --- - --- - --- - 87 q - 141 q + 194 q - 38 q - 120 q + 115 q - 3 2 q q q 8 9 10 11 12 13 14 15 > 68 q + 41 q + 8 q - 21 q + 8 q + 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10107 |
|