© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 945Visit 945's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 945's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,6,11,5 X8394 X2,9,3,10 X7,14,8,15 X18,15,1,16 X16,11,17,12 X12,17,13,18 X13,6,14,7 |
Gauss Code: | {1, -4, 3, -1, 2, 9, -5, -3, 4, -2, 7, -8, -9, 5, 6, -7, 8, -6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 -14 2 16 -6 18 12 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-2 + 6t-1 - 9 + 6t - t2 |
Conway Polynomial: | 1 + 2z2 - z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {23, -2} |
Jones Polynomial: | - q-8 + 2q-7 - 3q-6 + 4q-5 - 4q-4 + 4q-3 - 3q-2 + 2q-1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-26 - q-24 + q-22 + q-18 + q-16 - q-14 - q-10 + q-8 + q-6 + 2q-2 |
HOMFLY-PT Polynomial: | 2a2 + 2a2z2 - 2a4 - 2a4z2 - a4z4 + 2a6 + 2a6z2 - a8 |
Kauffman Polynomial: | - 2a2 + 3a2z2 + a3z3 + a3z5 - 2a4 + 6a4z2 - 4a4z4 + 2a4z6 - a5z3 + a5z7 - 2a6 + 7a6z2 - 10a6z4 + 4a6z6 + 2a7z - 5a7z3 + a7z7 - a8 + 4a8z2 - 6a8z4 + 2a8z6 + 2a9z - 3a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -4} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 945. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 2q-22 - q-21 + 6q-20 - 4q-19 - 6q-18 + 12q-17 - 3q-16 - 13q-15 + 15q-14 + q-13 - 18q-12 + 15q-11 + 5q-10 - 19q-9 + 12q-8 + 6q-7 - 13q-6 + 6q-5 + 4q-4 - 5q-3 + q-2 + q-1 |
3 | - q-45 + 2q-44 + q-43 - 2q-42 - 5q-41 + 3q-40 + 9q-39 - q-38 - 14q-37 - 3q-36 + 17q-35 + 11q-34 - 19q-33 - 18q-32 + 16q-31 + 26q-30 - 11q-29 - 34q-28 + 6q-27 + 38q-26 + 3q-25 - 43q-24 - 9q-23 + 45q-22 + 16q-21 - 48q-20 - 20q-19 + 45q-18 + 25q-17 - 43q-16 - 26q-15 + 35q-14 + 28q-13 - 28q-12 - 23q-11 + 17q-10 + 20q-9 - 10q-8 - 12q-7 + 2q-6 + 10q-5 - 3q-4 - q-3 - 2q-2 + 2q-1 |
4 | q-74 - 2q-73 - q-72 + 2q-71 + q-70 + 6q-69 - 7q-68 - 7q-67 + q-65 + 24q-64 - 5q-63 - 15q-62 - 14q-61 - 15q-60 + 44q-59 + 14q-58 - q-57 - 26q-56 - 57q-55 + 38q-54 + 31q-53 + 41q-52 - 8q-51 - 98q-50 + q-49 + 18q-48 + 87q-47 + 41q-46 - 113q-45 - 45q-44 - 21q-43 + 115q-42 + 97q-41 - 104q-40 - 83q-39 - 65q-38 + 129q-37 + 141q-36 - 88q-35 - 110q-34 - 99q-33 + 133q-32 + 170q-31 - 67q-30 - 126q-29 - 123q-28 + 123q-27 + 181q-26 - 38q-25 - 118q-24 - 133q-23 + 85q-22 + 162q-21 - q-20 - 80q-19 - 118q-18 + 33q-17 + 109q-16 + 21q-15 - 28q-14 - 74q-13 - 3q-12 + 47q-11 + 18q-10 + q-9 - 27q-8 - 8q-7 + 10q-6 + 5q-5 + 4q-4 - 4q-3 - 3q-2 + q-1 + 1 |
5 | - q-110 + 2q-109 + q-108 - 2q-107 - q-106 - 2q-105 - 2q-104 + 5q-103 + 9q-102 - 5q-100 - 10q-99 - 13q-98 + q-97 + 20q-96 + 23q-95 + 7q-94 - 14q-93 - 36q-92 - 32q-91 + 4q-90 + 41q-89 + 54q-88 + 28q-87 - 28q-86 - 74q-85 - 68q-84 - 9q-83 + 74q-82 + 113q-81 + 60q-80 - 45q-79 - 137q-78 - 132q-77 - 10q-76 + 142q-75 + 194q-74 + 87q-73 - 111q-72 - 244q-71 - 177q-70 + 55q-69 + 274q-68 + 264q-67 + 15q-66 - 272q-65 - 345q-64 - 101q-63 + 264q-62 + 408q-61 + 179q-60 - 237q-59 - 457q-58 - 259q-57 + 213q-56 + 500q-55 + 316q-54 - 182q-53 - 531q-52 - 375q-51 + 164q-50 + 559q-49 + 415q-48 - 140q-47 - 579q-46 - 458q-45 + 125q-44 + 590q-43 + 484q-42 - 90q-41 - 588q-40 - 517q-39 + 58q-38 + 566q-37 + 524q-36 - 2q-35 - 517q-34 - 531q-33 - 49q-32 + 447q-31 + 497q-30 + 109q-29 - 352q-28 - 450q-27 - 143q-26 + 245q-25 + 369q-24 + 167q-23 - 147q-22 - 282q-21 - 152q-20 + 67q-19 + 177q-18 + 138q-17 - 15q-16 - 114q-15 - 83q-14 - 9q-13 + 41q-12 + 61q-11 + 19q-10 - 28q-9 - 20q-8 - 9q-7 - 2q-6 + 15q-5 + 6q-4 - 3q-3 - 3q-2 - 2 + 2q |
6 | q-153 - 2q-152 - q-151 + 2q-150 + q-149 + 2q-148 - 2q-147 + 4q-146 - 7q-145 - 9q-144 + 3q-143 + 4q-142 + 11q-141 + 2q-140 + 18q-139 - 13q-138 - 27q-137 - 15q-136 - 9q-135 + 15q-134 + 11q-133 + 68q-132 + 14q-131 - 24q-130 - 42q-129 - 60q-128 - 38q-127 - 36q-126 + 110q-125 + 90q-124 + 73q-123 + 17q-122 - 63q-121 - 135q-120 - 209q-119 + 7q-118 + 72q-117 + 199q-116 + 215q-115 + 144q-114 - 74q-113 - 373q-112 - 256q-111 - 203q-110 + 98q-109 + 348q-108 + 515q-107 + 291q-106 - 240q-105 - 415q-104 - 623q-103 - 340q-102 + 132q-101 + 741q-100 + 788q-99 + 247q-98 - 208q-97 - 866q-96 - 901q-95 - 430q-94 + 600q-93 + 1107q-92 + 848q-91 + 312q-90 - 766q-89 - 1302q-88 - 1086q-87 + 183q-86 + 1134q-85 + 1317q-84 + 899q-83 - 445q-82 - 1467q-81 - 1617q-80 - 282q-79 + 993q-78 + 1599q-77 + 1368q-76 - 108q-75 - 1505q-74 - 1974q-73 - 640q-72 + 846q-71 + 1773q-70 + 1679q-69 + 129q-68 - 1524q-67 - 2210q-66 - 874q-65 + 755q-64 + 1902q-63 + 1886q-62 + 291q-61 - 1536q-60 - 2371q-59 - 1066q-58 + 654q-57 + 1969q-56 + 2046q-55 + 486q-54 - 1447q-53 - 2432q-52 - 1283q-51 + 417q-50 + 1861q-49 + 2124q-48 + 778q-47 - 1126q-46 - 2262q-45 - 1459q-44 + 7q-43 + 1449q-42 + 1957q-41 + 1049q-40 - 569q-39 - 1736q-38 - 1393q-37 - 406q-36 + 780q-35 + 1437q-34 + 1061q-33 - 14q-32 - 969q-31 - 989q-30 - 552q-29 + 164q-28 + 736q-27 + 743q-26 + 241q-25 - 320q-24 - 456q-23 - 385q-22 - 109q-21 + 209q-20 + 329q-19 + 189q-18 - 30q-17 - 105q-16 - 144q-15 - 96q-14 + 12q-13 + 80q-12 + 64q-11 + 12q-10 - 3q-9 - 21q-8 - 29q-7 - 9q-6 + 12q-5 + 9q-4 + 2q-3 + q-2 - 2 - 3q + q2 + q3 |
7 | - q-203 + 2q-202 + q-201 - 2q-200 - q-199 - 2q-198 + 2q-197 - 2q-195 + 7q-194 + 6q-193 - 2q-192 - 4q-191 - 13q-190 - 4q-189 - 9q-187 + 17q-186 + 23q-185 + 18q-184 + 11q-183 - 26q-182 - 26q-181 - 24q-180 - 47q-179 - 3q-178 + 30q-177 + 56q-176 + 92q-175 + 26q-174 - 2q-173 - 33q-172 - 125q-171 - 111q-170 - 86q-169 - 10q-168 + 145q-167 + 159q-166 + 181q-165 + 158q-164 - 49q-163 - 168q-162 - 310q-161 - 348q-160 - 124q-159 + 48q-158 + 318q-157 + 540q-156 + 421q-155 + 233q-154 - 181q-153 - 637q-152 - 709q-151 - 650q-150 - 180q-149 + 516q-148 + 892q-147 + 1108q-146 + 745q-145 - 114q-144 - 847q-143 - 1480q-142 - 1398q-141 - 531q-140 + 460q-139 + 1592q-138 + 2015q-137 + 1378q-136 + 237q-135 - 1390q-134 - 2421q-133 - 2230q-132 - 1181q-131 + 799q-130 + 2515q-129 + 2971q-128 + 2259q-127 + 84q-126 - 2273q-125 - 3471q-124 - 3295q-123 - 1153q-122 + 1685q-121 + 3675q-120 + 4207q-119 + 2314q-118 - 892q-117 - 3620q-116 - 4897q-115 - 3407q-114 - 29q-113 + 3312q-112 + 5383q-111 + 4399q-110 + 974q-109 - 2900q-108 - 5683q-107 - 5209q-106 - 1845q-105 + 2418q-104 + 5825q-103 + 5884q-102 + 2617q-101 - 1973q-100 - 5908q-99 - 6397q-98 - 3231q-97 + 1572q-96 + 5939q-95 + 6811q-94 + 3734q-93 - 1282q-92 - 5982q-91 - 7122q-90 - 4113q-89 + 1058q-88 + 6027q-87 + 7408q-86 + 4409q-85 - 914q-84 - 6090q-83 - 7635q-82 - 4673q-81 + 773q-80 + 6152q-79 + 7873q-78 + 4927q-77 - 628q-76 - 6166q-75 - 8059q-74 - 5224q-73 + 373q-72 + 6087q-71 + 8234q-70 + 5562q-69 - 27q-68 - 5857q-67 - 8262q-66 - 5911q-65 - 510q-64 + 5394q-63 + 8154q-62 + 6235q-61 + 1135q-60 - 4699q-59 - 7743q-58 - 6403q-57 - 1857q-56 + 3739q-55 + 7045q-54 + 6357q-53 + 2505q-52 - 2620q-51 - 6027q-50 - 5978q-49 - 2997q-48 + 1462q-47 + 4772q-46 + 5271q-45 + 3201q-44 - 412q-43 - 3411q-42 - 4318q-41 - 3085q-40 - 366q-39 + 2149q-38 + 3207q-37 + 2644q-36 + 838q-35 - 1084q-34 - 2135q-33 - 2082q-32 - 963q-31 + 400q-30 + 1241q-29 + 1385q-28 + 846q-27 + 54q-26 - 589q-25 - 869q-24 - 632q-23 - 147q-22 + 224q-21 + 405q-20 + 369q-19 + 190q-18 - 19q-17 - 199q-16 - 202q-15 - 101q-14 - 11q-13 + 46q-12 + 73q-11 + 65q-10 + 29q-9 - 16q-8 - 34q-7 - 18q-6 - 8q-5 - 2q-4 + 6q-3 + 7q-2 + 6q-1 + 1 - 3q - 2q2 - 2q4 + 2q5 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 45]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[7, 14, 8, 15], X[18, 15, 1, 16], X[16, 11, 17, 12], X[12, 17, 13, 18], > X[13, 6, 14, 7]] |
In[3]:= | GaussCode[Knot[9, 45]] |
Out[3]= | GaussCode[1, -4, 3, -1, 2, 9, -5, -3, 4, -2, 7, -8, -9, 5, 6, -7, 8, -6] |
In[4]:= | DTCode[Knot[9, 45]] |
Out[4]= | DTCode[4, 8, 10, -14, 2, 16, -6, 18, 12] |
In[5]:= | br = BR[Knot[9, 45]] |
Out[5]= | BR[4, {-1, -1, -2, 1, -2, -1, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 45]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 45]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 45]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, {4, 5}, 1} |
In[10]:= | alex = Alexander[Knot[9, 45]][t] |
Out[10]= | -2 6 2 -9 - t + - + 6 t - t t |
In[11]:= | Conway[Knot[9, 45]][z] |
Out[11]= | 2 4 1 + 2 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 45]} |
In[13]:= | {KnotDet[Knot[9, 45]], KnotSignature[Knot[9, 45]]} |
Out[13]= | {23, -2} |
In[14]:= | Jones[Knot[9, 45]][q] |
Out[14]= | -8 2 3 4 4 4 3 2 -q + -- - -- + -- - -- + -- - -- + - 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 45]} |
In[16]:= | A2Invariant[Knot[9, 45]][q] |
Out[16]= | -26 -24 -22 -18 -16 -14 -10 -8 -6 2 -q - q + q + q + q - q - q + q + q + -- 2 q |
In[17]:= | HOMFLYPT[Knot[9, 45]][a, z] |
Out[17]= | 2 4 6 8 2 2 4 2 6 2 4 4 2 a - 2 a + 2 a - a + 2 a z - 2 a z + 2 a z - a z |
In[18]:= | Kauffman[Knot[9, 45]][a, z] |
Out[18]= | 2 4 6 8 7 9 2 2 4 2 6 2 -2 a - 2 a - 2 a - a + 2 a z + 2 a z + 3 a z + 6 a z + 7 a z + 8 2 3 3 5 3 7 3 9 3 4 4 6 4 > 4 a z + a z - a z - 5 a z - 3 a z - 4 a z - 10 a z - 8 4 3 5 9 5 4 6 6 6 8 6 5 7 7 7 > 6 a z + a z + a z + 2 a z + 4 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 45]], Vassiliev[3][Knot[9, 45]]} |
Out[19]= | {2, -4} |
In[20]:= | Kh[Knot[9, 45]][q, t] |
Out[20]= | -3 2 1 1 1 2 1 2 2 2 q + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q t q t q t q t q t q t q t q t 2 2 2 1 2 > ----- + ----- + ----- + ---- + ---- 7 3 7 2 5 2 5 3 q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 45], 2][q] |
Out[21]= | -23 2 -21 6 4 6 12 3 13 15 -13 18 q - --- - q + --- - --- - --- + --- - --- - --- + --- + q - --- + 22 20 19 18 17 16 15 14 12 q q q q q q q q q 15 5 19 12 6 13 6 4 5 -2 1 > --- + --- - -- + -- + -- - -- + -- + -- - -- + q + - 11 10 9 8 7 6 5 4 3 q q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 945 |
|