© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 944Visit 944's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 944's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X5,10,6,11 X3948 X9,3,10,2 X14,8,15,7 X18,15,1,16 X16,11,17,12 X12,17,13,18 X6,14,7,13 |
Gauss Code: | {-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 -14 2 -16 -6 -18 -12 |
Minimum Braid Representative:
Length is 9, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-2 - 4t-1 + 7 - 4t + t2 |
Conway Polynomial: | 1 + z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {17, 0} |
Jones Polynomial: | - q-5 + 2q-4 - 2q-3 + 3q-2 - 3q-1 + 3 - 2q + q2 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-16 + 2q-8 + q-6 + q-4 - 1 - q4 + q6 + q8 |
HOMFLY-PT Polynomial: | a-2 - 2 - 2z2 + 3a2 + 3a2z2 + a2z4 - a4 - a4z2 |
Kauffman Polynomial: | - a-2 + a-2z2 - a-1z + 2a-1z3 - 2 + 6z2 - 3z4 + z6 - az + 4az3 - 3az5 + az7 - 3a2 + 10a2z2 - 10a2z4 + 3a2z6 + a3z - a3z3 - 2a3z5 + a3z7 - a4 + 5a4z2 - 7a4z4 + 2a4z6 + a5z - 3a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 944. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 2q-14 - q-13 + 5q-12 - 3q-11 - 4q-10 + 7q-9 - q-8 - 7q-7 + 7q-6 + 2q-5 - 9q-4 + 6q-3 + 4q-2 - 9q-1 + 4 + 4q - 5q2 + q3 + 2q4 - q5 |
3 | - q-30 + 2q-29 + q-28 - 2q-27 - 4q-26 + 2q-25 + 7q-24 - q-23 - 8q-22 - 2q-21 + 8q-20 + 5q-19 - 6q-18 - 8q-17 + 3q-16 + 8q-15 + 3q-14 - 10q-13 - 5q-12 + 8q-11 + 11q-10 - 9q-9 - 13q-8 + 7q-7 + 17q-6 - 8q-5 - 18q-4 + 6q-3 + 20q-2 - 5q-1 - 18 + q + 18q2 + q3 - 13q4 - 3q5 + 8q6 + 4q7 - 4q8 - 4q9 + 2q10 + q11 + q12 - q13 |
4 | q-50 - 2q-49 - q-48 + 2q-47 + q-46 + 5q-45 - 6q-44 - 5q-43 + 16q-40 - 4q-39 - 7q-38 - 5q-37 - 10q-36 + 19q-35 + 2q-34 + 3q-33 - 23q-31 + 7q-30 - 3q-29 + 14q-28 + 20q-27 - 21q-26 - 8q-25 - 23q-24 + 14q-23 + 43q-22 - 5q-21 - 15q-20 - 46q-19 + 3q-18 + 58q-17 + 14q-16 - 16q-15 - 63q-14 - 8q-13 + 68q-12 + 28q-11 - 17q-10 - 73q-9 - 15q-8 + 74q-7 + 38q-6 - 18q-5 - 77q-4 - 21q-3 + 71q-2 + 44q-1 - 11 - 70q - 31q2 + 53q3 + 44q4 + 3q5 - 47q6 - 33q7 + 24q8 + 28q9 + 13q10 - 17q11 - 22q12 + 3q13 + 9q14 + 9q15 - q16 - 7q17 - q18 + 2q20 + q21 - q22 |
5 | - q-75 + 2q-74 + q-73 - 2q-72 - q-71 - 2q-70 - q-69 + 4q-68 + 7q-67 - 4q-65 - 7q-64 - 7q-63 + 10q-61 + 13q-60 + 2q-59 - 5q-58 - 11q-57 - 13q-56 - 2q-55 + 9q-54 + 12q-53 + 11q-52 + 7q-51 - 8q-50 - 18q-49 - 20q-48 - 9q-47 + 14q-46 + 33q-45 + 32q-44 - 38q-42 - 54q-41 - 27q-40 + 33q-39 + 74q-38 + 55q-37 - 14q-36 - 83q-35 - 90q-34 - 9q-33 + 88q-32 + 111q-31 + 42q-30 - 80q-29 - 139q-28 - 68q-27 + 72q-26 + 151q-25 + 96q-24 - 58q-23 - 168q-22 - 116q-21 + 50q-20 + 173q-19 + 137q-18 - 42q-17 - 185q-16 - 146q-15 + 37q-14 + 189q-13 + 159q-12 - 35q-11 - 196q-10 - 163q-9 + 30q-8 + 195q-7 + 173q-6 - 22q-5 - 196q-4 - 174q-3 + 10q-2 + 180q-1 + 181 + 8q - 164q2 - 175q3 - 25q4 + 131q5 + 162q6 + 44q7 - 95q8 - 136q9 - 57q10 + 59q11 + 103q12 + 56q13 - 24q14 - 68q15 - 48q16 + 40q18 + 34q19 + 6q20 - 14q21 - 19q22 - 11q23 + 5q24 + 10q25 + 3q26 + q27 - 2q28 - 3q29 + q31 |
6 | q-105 - 2q-104 - q-103 + 2q-102 + q-101 + 2q-100 - 2q-99 + 3q-98 - 6q-97 - 7q-96 + 3q-95 + 3q-94 + 8q-93 + q-92 + 12q-91 - 10q-90 - 15q-89 - 6q-88 - 5q-87 + 7q-86 + 33q-84 + 2q-83 - 7q-82 - 6q-81 - 16q-80 - 10q-79 - 28q-78 + 25q-77 + 8q-76 + 18q-75 + 25q-74 + 16q-73 + 2q-72 - 58q-71 - 22q-70 - 43q-69 - 7q-68 + 36q-67 + 76q-66 + 85q-65 - 11q-64 - 29q-63 - 105q-62 - 105q-61 - 51q-60 + 67q-59 + 163q-58 + 109q-57 + 73q-56 - 74q-55 - 182q-54 - 203q-53 - 59q-52 + 135q-51 + 193q-50 + 231q-49 + 75q-48 - 151q-47 - 311q-46 - 234q-45 - q-44 + 175q-43 + 347q-42 + 264q-41 - 28q-40 - 330q-39 - 372q-38 - 168q-37 + 84q-36 + 391q-35 + 420q-34 + 115q-33 - 296q-32 - 454q-31 - 301q-30 - 12q-29 + 395q-28 + 524q-27 + 221q-26 - 261q-25 - 500q-24 - 384q-23 - 71q-22 + 395q-21 + 587q-20 + 279q-19 - 248q-18 - 530q-17 - 428q-16 - 96q-15 + 399q-14 + 624q-13 + 310q-12 - 240q-11 - 549q-10 - 460q-9 - 120q-8 + 390q-7 + 645q-6 + 349q-5 - 199q-4 - 539q-3 - 490q-2 - 179q-1 + 328 + 625q + 397q2 - 93q3 - 452q4 - 478q5 - 259q6 + 182q7 + 506q8 + 399q9 + 47q10 - 266q11 - 365q12 - 288q13 + 9q14 + 285q15 + 297q16 + 128q17 - 66q18 - 173q19 - 213q20 - 83q21 + 82q22 + 134q23 + 100q24 + 31q25 - 25q26 - 88q27 - 65q28 - 6q29 + 25q30 + 31q31 + 26q32 + 17q33 - 16q34 - 17q35 - 8q36 - 2q37 + 3q39 + 8q40 - q41 - q42 - q45 - q46 + q47 |
7 | - q-140 + 2q-139 + q-138 - 2q-137 - q-136 - 2q-135 + 2q-134 - q-132 + 6q-131 + 4q-130 - 2q-129 - 3q-128 - 10q-127 - 3q-126 + q-125 - 5q-124 + 12q-123 + 12q-122 + 9q-121 + 7q-120 - 15q-119 - 13q-118 - 7q-117 - 20q-116 + 6q-114 + 12q-113 + 37q-112 + 4q-111 + 2q-110 + 8q-109 - 23q-108 - 18q-107 - 32q-106 - 33q-105 + 15q-104 + 4q-103 + 22q-102 + 64q-101 + 37q-100 + 41q-99 - 12q-98 - 76q-97 - 63q-96 - 94q-95 - 63q-94 + 34q-93 + 79q-92 + 154q-91 + 146q-90 + 42q-89 - 23q-88 - 163q-87 - 227q-86 - 164q-85 - 88q-84 + 108q-83 + 260q-82 + 277q-81 + 238q-80 + 28q-79 - 211q-78 - 337q-77 - 402q-76 - 220q-75 + 77q-74 + 321q-73 + 514q-72 + 428q-71 + 139q-70 - 209q-69 - 557q-68 - 617q-67 - 380q-66 + 10q-65 + 500q-64 + 751q-63 + 635q-62 + 236q-61 - 377q-60 - 798q-59 - 842q-58 - 512q-57 + 171q-56 + 791q-55 + 1020q-54 + 762q-53 + 45q-52 - 717q-51 - 1117q-50 - 1000q-49 - 285q-48 + 617q-47 + 1197q-46 + 1189q-45 + 484q-44 - 503q-43 - 1222q-42 - 1339q-41 - 679q-40 + 398q-39 + 1250q-38 + 1456q-37 + 818q-36 - 313q-35 - 1252q-34 - 1544q-33 - 934q-32 + 250q-31 + 1266q-30 + 1608q-29 + 1010q-28 - 208q-27 - 1278q-26 - 1655q-25 - 1064q-24 + 187q-23 + 1291q-22 + 1689q-21 + 1103q-20 - 173q-19 - 1309q-18 - 1720q-17 - 1133q-16 + 163q-15 + 1319q-14 + 1745q-13 + 1171q-12 - 135q-11 - 1318q-10 - 1778q-9 - 1221q-8 + 89q-7 + 1300q-6 + 1788q-5 + 1281q-4 + 3q-3 - 1228q-2 - 1784q-1 - 1358 - 125q + 1113q2 + 1723q3 + 1403q4 + 284q5 - 911q6 - 1593q7 - 1421q8 - 460q9 + 672q10 + 1380q11 + 1362q12 + 595q13 - 386q14 - 1089q15 - 1216q16 - 684q17 + 109q18 + 770q19 + 1000q20 + 683q21 + 93q22 - 446q23 - 725q24 - 602q25 - 225q26 + 182q27 + 466q28 + 461q29 + 257q30 - 15q31 - 243q32 - 294q33 - 217q34 - 76q35 + 84q36 + 166q37 + 152q38 + 83q39 - 14q40 - 62q41 - 74q42 - 66q43 - 23q44 + 16q45 + 36q46 + 34q47 + 14q48 + q49 - 3q50 - 14q51 - 11q52 - 5q53 + q54 + 5q55 + 2q56 + q57 + 2q58 - q60 - q61 - q62 + q63 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 44]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], > X[14, 8, 15, 7], X[18, 15, 1, 16], X[16, 11, 17, 12], X[12, 17, 13, 18], > X[6, 14, 7, 13]] |
In[3]:= | GaussCode[Knot[9, 44]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, -9, 5, 3, -4, 2, 7, -8, 9, -5, 6, -7, 8, -6] |
In[4]:= | DTCode[Knot[9, 44]] |
Out[4]= | DTCode[4, 8, 10, -14, 2, -16, -6, -18, -12] |
In[5]:= | br = BR[Knot[9, 44]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, 1, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[9, 44]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 44]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 44]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, {4, 5}, 1} |
In[10]:= | alex = Alexander[Knot[9, 44]][t] |
Out[10]= | -2 4 2 7 + t - - - 4 t + t t |
In[11]:= | Conway[Knot[9, 44]][z] |
Out[11]= | 4 1 + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 44]} |
In[13]:= | {KnotDet[Knot[9, 44]], KnotSignature[Knot[9, 44]]} |
Out[13]= | {17, 0} |
In[14]:= | Jones[Knot[9, 44]][q] |
Out[14]= | -5 2 2 3 3 2 3 - q + -- - -- + -- - - - 2 q + q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 44]} |
In[16]:= | A2Invariant[Knot[9, 44]][q] |
Out[16]= | -16 2 -6 -4 4 6 8 -1 - q + -- + q + q - q + q + q 8 q |
In[17]:= | HOMFLYPT[Knot[9, 44]][a, z] |
Out[17]= | -2 2 4 2 2 2 4 2 2 4 -2 + a + 3 a - a - 2 z + 3 a z - a z + a z |
In[18]:= | Kauffman[Knot[9, 44]][a, z] |
Out[18]= | 2 -2 2 4 z 3 5 2 z 2 2 4 2 -2 - a - 3 a - a - - - a z + a z + a z + 6 z + -- + 10 a z + 5 a z + a 2 a 3 2 z 3 3 3 5 3 4 2 4 4 4 5 > ---- + 4 a z - a z - 3 a z - 3 z - 10 a z - 7 a z - 3 a z - a 3 5 5 5 6 2 6 4 6 7 3 7 > 2 a z + a z + z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 44]], Vassiliev[3][Knot[9, 44]]} |
Out[19]= | {0, -1} |
In[20]:= | Kh[Knot[9, 44]][q, t] |
Out[20]= | 2 1 1 1 1 1 2 1 1 2 - + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 5 2 > q t + q t + q t |
In[21]:= | ColouredJones[Knot[9, 44], 2][q] |
Out[21]= | -15 2 -13 5 3 4 7 -8 7 7 2 9 6 4 + q - --- - q + --- - --- - --- + -- - q - -- + -- + -- - -- + -- + 14 12 11 10 9 7 6 5 4 3 q q q q q q q q q q 4 9 2 3 4 5 > -- - - + 4 q - 5 q + q + 2 q - q 2 q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 944 |
|