© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 92Visit 92's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
![]() KnotPlot |
PD Presentation: | X1425 X3,12,4,13 X5,18,6,1 X7,16,8,17 X9,14,10,15 X13,10,14,11 X15,8,16,9 X17,6,18,7 X11,2,12,3 |
Gauss Code: | {-1, 9, -2, 1, -3, 8, -4, 7, -5, 6, -9, 2, -6, 5, -7, 4, -8, 3} |
DT (Dowker-Thistlethwaite) Code: | 4 12 18 16 14 2 10 8 6 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 4t-1 - 7 + 4t |
Conway Polynomial: | 1 + 4z2 |
Other knots with the same Alexander/Conway Polynomial: | {74, ...} |
Determinant and Signature: | {15, -2} |
Jones Polynomial: | - q-10 + q-9 - q-8 + 2q-7 - 2q-6 + 2q-5 - 2q-4 + 2q-3 - q-2 + q-1 |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n13, ...} |
A2 (sl(3)) Invariant: | - q-32 - q-30 + q-24 + q-22 + q-8 + q-6 + q-2 |
HOMFLY-PT Polynomial: | a2 + a2z2 + a4z2 + a6z2 + a8 + a8z2 - a10 |
Kauffman Polynomial: | - a2 + a2z2 + a3z3 + a4z4 - a5z3 + a5z5 - 2a6z4 + a6z6 + a7z3 - 3a7z5 + a7z7 + a8 - 6a8z2 + 8a8z4 - 5a8z6 + a8z8 - 4a9z + 13a9z3 - 10a9z5 + 2a9z7 + a10 - 7a10z2 + 11a10z4 - 6a10z6 + a10z8 - 4a11z + 10a11z3 - 6a11z5 + a11z7 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {4, -10} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 92. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-29 - q-28 - q-27 + 2q-26 - q-25 - 2q-24 + 3q-23 - 3q-21 + 3q-20 - 3q-18 + 3q-17 - 3q-15 + 2q-14 - 2q-12 + 2q-11 - 2q-9 + 3q-8 - 2q-6 + 2q-5 - q-3 + q-2 |
3 | - q-57 + q-56 + q-55 - 2q-53 + 2q-51 + q-50 - 3q-49 - q-48 + 2q-47 + 2q-46 - 2q-45 - 2q-44 + 2q-43 + 2q-42 - 2q-41 - 2q-40 + 2q-39 + 2q-38 - 2q-37 - 2q-36 + 3q-35 + 2q-34 - 3q-33 - 3q-32 + 4q-31 + 2q-30 - 4q-29 - 3q-28 + 5q-27 + 2q-26 - 5q-25 - 2q-24 + 6q-23 + 2q-22 - 6q-21 - 3q-20 + 6q-19 + 2q-18 - 4q-17 - 4q-16 + 5q-15 + 2q-14 - 2q-13 - 3q-12 + 3q-11 + q-10 - 2q-8 + 2q-7 - q-4 + q-3 |
4 | q-94 - q-93 - q-92 + 3q-89 - q-88 - q-87 - q-86 - 2q-85 + 5q-84 - q-82 - q-81 - 4q-80 + 5q-79 - 5q-75 + 5q-74 - 5q-70 + 5q-69 - 6q-65 + 5q-64 + q-63 + q-62 + q-61 - 8q-60 + 4q-59 + 2q-58 + 2q-57 + 2q-56 - 10q-55 + 2q-54 + 3q-53 + 3q-52 + 3q-51 - 11q-50 + 4q-48 + 4q-47 + 4q-46 - 11q-45 - q-44 + 5q-43 + 4q-42 + 4q-41 - 12q-40 - 2q-39 + 5q-38 + 5q-37 + 5q-36 - 13q-35 - 3q-34 + 5q-33 + 5q-32 + 5q-31 - 12q-30 - 2q-29 + 3q-28 + 4q-27 + 5q-26 - 10q-25 + 2q-23 + 3q-22 + 3q-21 - 7q-20 + q-19 + q-18 + q-17 + 2q-16 - 4q-15 + 2q-14 + q-11 - 2q-10 + 2q-9 - q-5 + q-4 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 2]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[5, 18, 6, 1], X[7, 16, 8, 17], > X[9, 14, 10, 15], X[13, 10, 14, 11], X[15, 8, 16, 9], X[17, 6, 18, 7], > X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[9, 2]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 8, -4, 7, -5, 6, -9, 2, -6, 5, -7, 4, -8, 3] |
In[4]:= | DTCode[Knot[9, 2]] |
Out[4]= | DTCode[4, 12, 18, 16, 14, 2, 10, 8, 6] |
In[5]:= | br = BR[Knot[9, 2]] |
Out[5]= | BR[5, {-1, -1, -1, -2, 1, -2, -3, 2, -3, -4, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[9, 2]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[9, 2]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 2]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 1, 2, {4, 7}, 1} |
In[10]:= | alex = Alexander[Knot[9, 2]][t] |
Out[10]= | 4 -7 + - + 4 t t |
In[11]:= | Conway[Knot[9, 2]][z] |
Out[11]= | 2 1 + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 4], Knot[9, 2]} |
In[13]:= | {KnotDet[Knot[9, 2]], KnotSignature[Knot[9, 2]]} |
Out[13]= | {15, -2} |
In[14]:= | Jones[Knot[9, 2]][q] |
Out[14]= | -10 -9 -8 2 2 2 2 2 -2 1 -q + q - q + -- - -- + -- - -- + -- - q + - 7 6 5 4 3 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 2], Knot[11, NonAlternating, 13]} |
In[16]:= | A2Invariant[Knot[9, 2]][q] |
Out[16]= | -32 -30 -24 -22 -8 -6 -2 -q - q + q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[9, 2]][a, z] |
Out[17]= | 2 8 10 2 2 4 2 6 2 8 2 a + a - a + a z + a z + a z + a z |
In[18]:= | Kauffman[Knot[9, 2]][a, z] |
Out[18]= | 2 8 10 9 11 2 2 8 2 10 2 3 3 -a + a + a - 4 a z - 4 a z + a z - 6 a z - 7 a z + a z - 5 3 7 3 9 3 11 3 4 4 6 4 8 4 > a z + a z + 13 a z + 10 a z + a z - 2 a z + 8 a z + 10 4 5 5 7 5 9 5 11 5 6 6 8 6 > 11 a z + a z - 3 a z - 10 a z - 6 a z + a z - 5 a z - 10 6 7 7 9 7 11 7 8 8 10 8 > 6 a z + a z + 2 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 2]], Vassiliev[3][Knot[9, 2]]} |
Out[19]= | {4, -10} |
In[20]:= | Kh[Knot[9, 2]][q, t] |
Out[20]= | -3 1 1 1 1 1 1 1 1 q + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + q 21 9 17 8 17 7 15 6 13 6 13 5 11 5 q t q t q t q t q t q t q t 1 1 1 1 1 1 1 > ------ + ----- + ----- + ----- + ----- + ----- + ---- 11 4 9 4 9 3 7 3 7 2 5 2 3 q t q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 2], 2][q] |
Out[21]= | -29 -28 -27 2 -25 2 3 3 3 3 3 3 q - q - q + --- - q - --- + --- - --- + --- - --- + --- - --- + 26 24 23 21 20 18 17 15 q q q q q q q q 2 2 2 2 3 2 2 -3 -2 > --- - --- + --- - -- + -- - -- + -- - q + q 14 12 11 9 8 6 5 q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 92 |
|