© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 913Visit 913's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 913's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X14,6,15,5 X16,8,17,7 X18,10,1,9 X8,18,9,17 X10,16,11,15 X2,14,3,13 X12,4,13,3 X4,12,5,11 |
Gauss Code: | {1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4} |
DT (Dowker-Thistlethwaite) Code: | 6 12 14 16 18 4 2 10 8 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 4t-2 - 9t-1 + 11 - 9t + 4t2 |
Conway Polynomial: | 1 + 7z2 + 4z4 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {37, 4} |
Jones Polynomial: | q2 - 2q3 + 4q4 - 5q5 + 7q6 - 6q7 + 5q8 - 4q9 + 2q10 - q11 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q6 - q8 + q10 + 3q16 + q18 + 2q20 - q24 - 2q28 - q34 |
HOMFLY-PT Polynomial: | - a-10 - a-10z2 - a-8 + a-8z2 + a-8z4 + 3a-6 + 5a-6z2 + 2a-6z4 + 2a-4z2 + a-4z4 |
Kauffman Polynomial: | 2a-13z - 3a-13z3 + a-13z5 + 2a-12z2 - 5a-12z4 + 2a-12z6 - 2a-11z + 2a-11z3 - 4a-11z5 + 2a-11z7 + a-10 - 2a-10z2 - a-10z4 + a-10z8 - 3a-9z + 9a-9z3 - 9a-9z5 + 4a-9z7 - a-8 + 6a-8z2 - 4a-8z4 + a-8z6 + a-8z8 + a-7z + a-7z3 - 2a-7z5 + 2a-7z7 - 3a-6 + 8a-6z2 - 7a-6z4 + 3a-6z6 - 3a-5z3 + 2a-5z5 - 2a-4z2 + a-4z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {7, 18} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 913. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q4 - 2q5 + q6 + 5q7 - 8q8 + q9 + 14q10 - 18q11 - q12 + 28q13 - 28q14 - 6q15 + 39q16 - 31q17 - 10q18 + 38q19 - 24q20 - 13q21 + 29q22 - 13q23 - 12q24 + 17q25 - 4q26 - 7q27 + 6q28 - 2q30 + q31 |
3 | q6 - 2q7 + q8 + 2q9 + q10 - 6q11 + q12 + 8q13 + 2q14 - 16q15 + 21q17 + 7q18 - 36q19 - 9q20 + 45q21 + 24q22 - 63q23 - 33q24 + 71q25 + 52q26 - 85q27 - 60q28 + 82q29 + 79q30 - 89q31 - 79q32 + 77q33 + 87q34 - 71q35 - 85q36 + 55q37 + 83q38 - 40q39 - 79q40 + 26q41 + 69q42 - 9q43 - 61q44 + 46q46 + 11q47 - 36q48 - 10q49 + 20q50 + 13q51 - 13q52 - 8q53 + 5q54 + 6q55 - 3q56 - 2q57 + 2q59 - q60 |
4 | q8 - 2q9 + q10 + 2q11 - 2q12 + 3q13 - 7q14 + 4q15 + 7q16 - 9q17 + 9q18 - 17q19 + 10q20 + 18q21 - 22q22 + 13q23 - 38q24 + 25q25 + 47q26 - 33q27 + 8q28 - 92q29 + 36q30 + 109q31 - 11q32 + 5q33 - 196q34 + 11q35 + 186q36 + 60q37 + 36q38 - 324q39 - 58q40 + 238q41 + 147q42 + 103q43 - 418q44 - 136q45 + 241q46 + 205q47 + 178q48 - 450q49 - 189q50 + 209q51 + 219q52 + 227q53 - 419q54 - 207q55 + 148q56 + 197q57 + 259q58 - 340q59 - 202q60 + 65q61 + 149q62 + 275q63 - 227q64 - 173q65 - 24q66 + 78q67 + 262q68 - 105q69 - 116q70 - 80q71 - q72 + 202q73 - 15q74 - 44q75 - 81q76 - 48q77 + 115q78 + 15q79 + 6q80 - 43q81 - 48q82 + 45q83 + 8q84 + 17q85 - 12q86 - 25q87 + 14q88 - q89 + 8q90 - q91 - 8q92 + 4q93 - q94 + 2q95 - 2q97 + q98 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 13]] |
Out[2]= | PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 8, 17, 7], X[18, 10, 1, 9], > X[8, 18, 9, 17], X[10, 16, 11, 15], X[2, 14, 3, 13], X[12, 4, 13, 3], > X[4, 12, 5, 11]] |
In[3]:= | GaussCode[Knot[9, 13]] |
Out[3]= | GaussCode[1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4] |
In[4]:= | DTCode[Knot[9, 13]] |
Out[4]= | DTCode[6, 12, 14, 16, 18, 4, 2, 10, 8] |
In[5]:= | br = BR[Knot[9, 13]] |
Out[5]= | BR[4, {1, 1, 1, 1, 2, -1, 2, 2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[9, 13]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[9, 13]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 13]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 13]][t] |
Out[10]= | 4 9 2 11 + -- - - - 9 t + 4 t 2 t t |
In[11]:= | Conway[Knot[9, 13]][z] |
Out[11]= | 2 4 1 + 7 z + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 13]} |
In[13]:= | {KnotDet[Knot[9, 13]], KnotSignature[Knot[9, 13]]} |
Out[13]= | {37, 4} |
In[14]:= | Jones[Knot[9, 13]][q] |
Out[14]= | 2 3 4 5 6 7 8 9 10 11 q - 2 q + 4 q - 5 q + 7 q - 6 q + 5 q - 4 q + 2 q - q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 13]} |
In[16]:= | A2Invariant[Knot[9, 13]][q] |
Out[16]= | 6 8 10 16 18 20 24 28 34 q - q + q + 3 q + q + 2 q - q - 2 q - q |
In[17]:= | HOMFLYPT[Knot[9, 13]][a, z] |
Out[17]= | 2 2 2 2 4 4 4 -10 -8 3 z z 5 z 2 z z 2 z z -a - a + -- - --- + -- + ---- + ---- + -- + ---- + -- 6 10 8 6 4 8 6 4 a a a a a a a a |
In[18]:= | Kauffman[Knot[9, 13]][a, z] |
Out[18]= | 2 2 2 2 2 -10 -8 3 2 z 2 z 3 z z 2 z 2 z 6 z 8 z 2 z a - a - -- + --- - --- - --- + -- + ---- - ---- + ---- + ---- - ---- - 6 13 11 9 7 12 10 8 6 4 a a a a a a a a a a 3 3 3 3 3 4 4 4 4 4 5 3 z 2 z 9 z z 3 z 5 z z 4 z 7 z z z > ---- + ---- + ---- + -- - ---- - ---- - --- - ---- - ---- + -- + --- - 13 11 9 7 5 12 10 8 6 4 13 a a a a a a a a a a a 5 5 5 5 6 6 6 7 7 7 8 8 4 z 9 z 2 z 2 z 2 z z 3 z 2 z 4 z 2 z z z > ---- - ---- - ---- + ---- + ---- + -- + ---- + ---- + ---- + ---- + --- + -- 11 9 7 5 12 8 6 11 9 7 10 8 a a a a a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[9, 13]], Vassiliev[3][Knot[9, 13]]} |
Out[19]= | {7, 18} |
In[20]:= | Kh[Knot[9, 13]][q, t] |
Out[20]= | 3 5 5 7 2 9 2 9 3 11 3 11 4 q + q + 2 q t + 2 q t + 2 q t + 3 q t + 2 q t + 4 q t + 13 4 13 5 15 5 15 6 17 6 17 7 19 7 > 3 q t + 2 q t + 4 q t + 3 q t + 2 q t + q t + 3 q t + 19 8 21 8 23 9 > q t + q t + q t |
In[21]:= | ColouredJones[Knot[9, 13], 2][q] |
Out[21]= | 4 5 6 7 8 9 10 11 12 13 14 q - 2 q + q + 5 q - 8 q + q + 14 q - 18 q - q + 28 q - 28 q - 15 16 17 18 19 20 21 22 > 6 q + 39 q - 31 q - 10 q + 38 q - 24 q - 13 q + 29 q - 23 24 25 26 27 28 30 31 > 13 q - 12 q + 17 q - 4 q - 7 q + 6 q - 2 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 913 |
|