© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 912Visit 912's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 912's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3,10,4,11 X5,16,6,17 X11,1,12,18 X17,13,18,12 X7,14,8,15 X13,8,14,9 X15,6,16,7 X9,2,10,3 |
Gauss Code: | {-1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4} |
DT (Dowker-Thistlethwaite) Code: | 4 10 16 14 2 18 8 6 12 |
Minimum Braid Representative:
Length is 10, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 2t-2 + 9t-1 - 13 + 9t - 2t2 |
Conway Polynomial: | 1 + z2 - 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {K11n84, ...} |
Determinant and Signature: | {35, -2} |
Jones Polynomial: | - q-8 + 2q-7 - 3q-6 + 5q-5 - 6q-4 + 6q-3 - 5q-2 + 4q-1 - 2 + q |
Other knots (up to mirrors) with the same Jones Polynomial: | {K11n15, ...} |
A2 (sl(3)) Invariant: | - q-26 - q-24 + q-22 + q-18 + 2q-16 - q-14 - q-10 + q-6 - q-4 + 2q-2 + q4 |
HOMFLY-PT Polynomial: | 1 + z2 - a2z2 - a2z4 - a4 - a4z2 - a4z4 + 2a6 + 2a6z2 - a8 |
Kauffman Polynomial: | 1 - 2z2 + z4 - 3az3 + 2az5 - 2a2z2 - a2z4 + 2a2z6 - 2a3z + 4a3z3 - 3a3z5 + 2a3z7 - a4 + 3a4z2 - a4z4 + a4z8 - 4a5z + 13a5z3 - 11a5z5 + 4a5z7 - 2a6 + 7a6z2 - 5a6z4 + a6z8 - a7z + 3a7z3 - 5a7z5 + 2a7z7 - a8 + 4a8z2 - 6a8z4 + 2a8z6 + a9z - 3a9z3 + a9z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {1, -3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 912. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-23 - 2q-22 + 5q-20 - 7q-19 - 2q-18 + 14q-17 - 11q-16 - 9q-15 + 25q-14 - 13q-13 - 19q-12 + 34q-11 - 12q-10 - 25q-9 + 35q-8 - 8q-7 - 23q-6 + 26q-5 - 3q-4 - 16q-3 + 14q-2 - 7 + 5q - 2q3 + q4 |
3 | - q-45 + 2q-44 - 2q-42 - 2q-41 + 6q-40 + 3q-39 - 9q-38 - 8q-37 + 14q-36 + 13q-35 - 16q-34 - 23q-33 + 16q-32 + 35q-31 - 13q-30 - 44q-29 + 3q-28 + 57q-27 + 5q-26 - 63q-25 - 20q-24 + 71q-23 + 31q-22 - 75q-21 - 41q-20 + 76q-19 + 49q-18 - 74q-17 - 56q-16 + 71q-15 + 56q-14 - 60q-13 - 57q-12 + 51q-11 + 50q-10 - 35q-9 - 46q-8 + 26q-7 + 34q-6 - 13q-5 - 27q-4 + 10q-3 + 15q-2 - 3q-1 - 11 + 4q + 5q2 - 2q3 - 4q4 + 3q5 + q6 - 2q8 + q9 |
4 | q-74 - 2q-73 + 2q-71 - q-70 + 3q-69 - 8q-68 + q-67 + 9q-66 - 2q-65 + 8q-64 - 24q-63 - 4q-62 + 24q-61 + 4q-60 + 23q-59 - 51q-58 - 25q-57 + 32q-56 + 17q-55 + 67q-54 - 68q-53 - 60q-52 + 8q-51 + 12q-50 + 136q-49 - 46q-48 - 77q-47 - 49q-46 - 41q-45 + 199q-44 + 12q-43 - 52q-42 - 106q-41 - 133q-40 + 230q-39 + 77q-38 + 6q-37 - 142q-36 - 227q-35 + 235q-34 + 123q-33 + 63q-32 - 155q-31 - 291q-30 + 221q-29 + 147q-28 + 107q-27 - 152q-26 - 320q-25 + 188q-24 + 148q-23 + 136q-22 - 121q-21 - 308q-20 + 128q-19 + 115q-18 + 150q-17 - 61q-16 - 253q-15 + 62q-14 + 52q-13 + 132q-12 + 2q-11 - 164q-10 + 20q-9 - 8q-8 + 83q-7 + 31q-6 - 78q-5 + 14q-4 - 32q-3 + 32q-2 + 24q-1 - 28 + 18q - 22q2 + 7q3 + 7q4 - 12q5 + 15q6 - 7q7 + q8 - 6q10 + 6q11 - q12 + q13 - 2q15 + q16 |
5 | - q-110 + 2q-109 - 2q-107 + q-106 - q-104 + 4q-103 - 8q-101 - q-100 + 5q-99 + 4q-98 + 9q-97 - q-96 - 20q-95 - 16q-94 + 7q-93 + 24q-92 + 29q-91 + 9q-90 - 40q-89 - 53q-88 - 19q-87 + 38q-86 + 77q-85 + 53q-84 - 30q-83 - 96q-82 - 89q-81 - 6q-80 + 97q-79 + 130q-78 + 55q-77 - 68q-76 - 150q-75 - 120q-74 + 4q-73 + 141q-72 + 189q-71 + 83q-70 - 95q-69 - 223q-68 - 201q-67 + 250q-65 + 309q-64 + 110q-63 - 212q-62 - 413q-61 - 264q-60 + 171q-59 + 495q-58 + 393q-57 - 82q-56 - 549q-55 - 537q-54 + 2q-53 + 585q-52 + 646q-51 + 84q-50 - 599q-49 - 737q-48 - 161q-47 + 603q-46 + 807q-45 + 225q-44 - 603q-43 - 854q-42 - 274q-41 + 585q-40 + 886q-39 + 328q-38 - 565q-37 - 909q-36 - 359q-35 + 516q-34 + 896q-33 + 422q-32 - 458q-31 - 877q-30 - 451q-29 + 361q-28 + 810q-27 + 501q-26 - 255q-25 - 728q-24 - 502q-23 + 127q-22 + 594q-21 + 508q-20 - 18q-19 - 460q-18 - 444q-17 - 87q-16 + 300q-15 + 393q-14 + 138q-13 - 178q-12 - 279q-11 - 167q-10 + 58q-9 + 204q-8 + 152q-7 - 4q-6 - 104q-5 - 122q-4 - 42q-3 + 55q-2 + 82q-1 + 41 - 7q - 49q2 - 41q3 + 17q5 + 23q6 + 18q7 - 9q8 - 16q9 - 5q10 - 4q11 + q12 + 13q13 + 3q14 - 5q15 + q16 - 4q17 - 4q18 + 4q19 + 2q20 - q21 + q22 - 2q24 + q25 |
6 | q-153 - 2q-152 + 2q-150 - q-149 - 2q-147 + 5q-146 - 5q-145 - q-144 + 10q-143 - 3q-142 - 4q-141 - 11q-140 + 11q-139 - 8q-138 + q-137 + 31q-136 - q-135 - 12q-134 - 40q-133 + 10q-132 - 20q-131 + 6q-130 + 82q-129 + 28q-128 - 6q-127 - 94q-126 - 19q-125 - 75q-124 - 17q-123 + 152q-122 + 115q-121 + 69q-120 - 120q-119 - 49q-118 - 201q-117 - 138q-116 + 145q-115 + 196q-114 + 223q-113 - 25q-112 + 63q-111 - 281q-110 - 333q-109 - 43q-108 + 83q-107 + 265q-106 + 124q-105 + 412q-104 - 82q-103 - 336q-102 - 283q-101 - 295q-100 - 73q-99 + 6q-98 + 794q-97 + 428q-96 + 121q-95 - 204q-94 - 670q-93 - 773q-92 - 626q-91 + 810q-90 + 938q-89 + 959q-88 + 403q-87 - 652q-86 - 1485q-85 - 1635q-84 + 303q-83 + 1092q-82 + 1810q-81 + 1349q-80 - 154q-79 - 1884q-78 - 2642q-77 - 500q-76 + 848q-75 + 2379q-74 + 2263q-73 + 568q-72 - 1943q-71 - 3366q-70 - 1252q-69 + 435q-68 + 2635q-67 + 2904q-66 + 1206q-65 - 1836q-64 - 3764q-63 - 1770q-62 + 79q-61 + 2709q-60 + 3254q-59 + 1630q-58 - 1709q-57 - 3930q-56 - 2078q-55 - 174q-54 + 2693q-53 + 3419q-52 + 1910q-51 - 1547q-50 - 3934q-49 - 2300q-48 - 430q-47 + 2535q-46 + 3457q-45 + 2177q-44 - 1212q-43 - 3703q-42 - 2475q-41 - 819q-40 + 2081q-39 + 3266q-38 + 2439q-37 - 598q-36 - 3078q-35 - 2446q-34 - 1295q-33 + 1258q-32 + 2666q-31 + 2492q-30 + 171q-29 - 2038q-28 - 2006q-27 - 1581q-26 + 284q-25 + 1675q-24 + 2109q-23 + 729q-22 - 893q-21 - 1200q-20 - 1420q-19 - 403q-18 + 649q-17 + 1362q-16 + 801q-15 - 102q-14 - 390q-13 - 904q-12 - 566q-11 + 3q-10 + 622q-9 + 514q-8 + 164q-7 + 74q-6 - 388q-5 - 384q-4 - 185q-3 + 184q-2 + 203q-1 + 123 + 179q - 103q2 - 167q3 - 140q4 + 30q5 + 41q6 + 34q7 + 128q8 - 9q9 - 48q10 - 66q11 + q12 - 6q13 - 8q14 + 63q15 + 7q16 - 5q17 - 23q18 + q19 - 10q20 - 14q21 + 23q22 + 4q23 + 4q24 - 6q25 + 3q26 - 4q27 - 8q28 + 6q29 + 2q31 - q32 + q33 - 2q35 + q36 |
7 | - q-203 + 2q-202 - 2q-200 + q-199 + 2q-197 - 2q-196 - 4q-195 + 6q-194 - q-193 - 6q-192 + 3q-191 + 2q-190 + 10q-189 - 16q-187 + 6q-186 - 6q-185 - 14q-184 + 8q-183 + 6q-182 + 36q-181 + 18q-180 - 32q-179 - 10q-178 - 35q-177 - 42q-176 + 10q-175 + 11q-174 + 93q-173 + 92q-172 - 19q-171 - 24q-170 - 113q-169 - 134q-168 - 45q-167 - 26q-166 + 166q-165 + 245q-164 + 109q-163 + 65q-162 - 160q-161 - 294q-160 - 217q-159 - 224q-158 + 105q-157 + 358q-156 + 315q-155 + 369q-154 + 30q-153 - 278q-152 - 343q-151 - 546q-150 - 241q-149 + 118q-148 + 232q-147 + 608q-146 + 444q-145 + 163q-144 + 56q-143 - 489q-142 - 520q-141 - 459q-140 - 522q-139 + 107q-138 + 370q-137 + 632q-136 + 1043q-135 + 529q-134 + 135q-133 - 512q-132 - 1489q-131 - 1338q-130 - 999q-129 - 4q-128 + 1672q-127 + 2124q-126 + 2130q-125 + 993q-124 - 1386q-123 - 2731q-122 - 3432q-121 - 2385q-120 + 657q-119 + 2962q-118 + 4596q-117 + 4038q-116 + 633q-115 - 2696q-114 - 5594q-113 - 5819q-112 - 2213q-111 + 2011q-110 + 6152q-109 + 7429q-108 + 4064q-107 - 848q-106 - 6365q-105 - 8898q-104 - 5890q-103 - 463q-102 + 6175q-101 + 9957q-100 + 7609q-99 + 1963q-98 - 5738q-97 - 10777q-96 - 9083q-95 - 3337q-94 + 5150q-93 + 11255q-92 + 10267q-91 + 4590q-90 - 4511q-89 - 11530q-88 - 11181q-87 - 5618q-86 + 3922q-85 + 11667q-84 + 11827q-83 + 6397q-82 - 3415q-81 - 11681q-80 - 12276q-79 - 7008q-78 + 3005q-77 + 11682q-76 + 12593q-75 + 7427q-74 - 2689q-73 - 11617q-72 - 12798q-71 - 7775q-70 + 2363q-69 + 11532q-68 + 12985q-67 + 8099q-66 - 2057q-65 - 11373q-64 - 13063q-63 - 8434q-62 + 1579q-61 + 11041q-60 + 13141q-59 + 8840q-58 - 995q-57 - 10516q-56 - 13006q-55 - 9240q-54 + 131q-53 + 9659q-52 + 12691q-51 + 9628q-50 + 875q-49 - 8469q-48 - 11991q-47 - 9850q-46 - 2041q-45 + 6913q-44 + 10930q-43 + 9801q-42 + 3157q-41 - 5108q-40 - 9411q-39 - 9366q-38 - 4138q-37 + 3201q-36 + 7619q-35 + 8508q-34 + 4701q-33 - 1417q-32 - 5570q-31 - 7247q-30 - 4912q-29 - 81q-28 + 3676q-27 + 5758q-26 + 4556q-25 + 1075q-24 - 1911q-23 - 4153q-22 - 3948q-21 - 1634q-20 + 666q-19 + 2740q-18 + 3035q-17 + 1679q-16 + 211q-15 - 1532q-14 - 2163q-13 - 1499q-12 - 604q-11 + 734q-10 + 1367q-9 + 1108q-8 + 719q-7 - 213q-6 - 785q-5 - 751q-4 - 633q-3 - 21q-2 + 394q-1 + 437 + 497q + 107q2 - 190q3 - 232q4 - 328q5 - 107q6 + 56q7 + 105q8 + 245q9 + 87q10 - 45q11 - 46q12 - 129q13 - 54q14 - 10q15 + 2q16 + 115q17 + 47q18 - 13q19 - 3q20 - 52q21 - 17q22 - 15q23 - 22q24 + 47q25 + 27q26 + q27 + 5q28 - 18q29 - 3q30 - 8q31 - 20q32 + 14q33 + 10q34 + 2q35 + 6q36 - 5q37 + 2q38 - 2q39 - 8q40 + 2q41 + 2q42 + 2q44 - q45 + q46 - 2q48 + q49 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[9, 12]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 16, 6, 17], X[11, 1, 12, 18], > X[17, 13, 18, 12], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7], > X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[9, 12]] |
Out[3]= | GaussCode[-1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4] |
In[4]:= | DTCode[Knot[9, 12]] |
Out[4]= | DTCode[4, 10, 16, 14, 2, 18, 8, 6, 12] |
In[5]:= | br = BR[Knot[9, 12]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, -3, -4, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 10} |
In[7]:= | BraidIndex[Knot[9, 12]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[9, 12]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[9, 12]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[9, 12]][t] |
Out[10]= | 2 9 2 -13 - -- + - + 9 t - 2 t 2 t t |
In[11]:= | Conway[Knot[9, 12]][z] |
Out[11]= | 2 4 1 + z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[9, 12], Knot[11, NonAlternating, 84]} |
In[13]:= | {KnotDet[Knot[9, 12]], KnotSignature[Knot[9, 12]]} |
Out[13]= | {35, -2} |
In[14]:= | Jones[Knot[9, 12]][q] |
Out[14]= | -8 2 3 5 6 6 5 4 -2 - q + -- - -- + -- - -- + -- - -- + - + q 7 6 5 4 3 2 q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[9, 12], Knot[11, NonAlternating, 15]} |
In[16]:= | A2Invariant[Knot[9, 12]][q] |
Out[16]= | -26 -24 -22 -18 2 -14 -10 -6 -4 2 4 -q - q + q + q + --- - q - q + q - q + -- + q 16 2 q q |
In[17]:= | HOMFLYPT[Knot[9, 12]][a, z] |
Out[17]= | 4 6 8 2 2 2 4 2 6 2 2 4 4 4 1 - a + 2 a - a + z - a z - a z + 2 a z - a z - a z |
In[18]:= | Kauffman[Knot[9, 12]][a, z] |
Out[18]= | 4 6 8 3 5 7 9 2 2 2 4 2 1 - a - 2 a - a - 2 a z - 4 a z - a z + a z - 2 z - 2 a z + 3 a z + 6 2 8 2 3 3 3 5 3 7 3 9 3 4 > 7 a z + 4 a z - 3 a z + 4 a z + 13 a z + 3 a z - 3 a z + z - 2 4 4 4 6 4 8 4 5 3 5 5 5 7 5 > a z - a z - 5 a z - 6 a z + 2 a z - 3 a z - 11 a z - 5 a z + 9 5 2 6 8 6 3 7 5 7 7 7 4 8 6 8 > a z + 2 a z + 2 a z + 2 a z + 4 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[9, 12]], Vassiliev[3][Knot[9, 12]]} |
Out[19]= | {1, -3} |
In[20]:= | Kh[Knot[9, 12]][q, t] |
Out[20]= | 2 3 1 1 1 2 1 3 2 3 -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 9 3 q q t q t q t q t q t q t q t q t 3 3 3 2 3 t 3 2 > ----- + ----- + ----- + ---- + ---- + - + q t + q t 7 3 7 2 5 2 5 3 q q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[9, 12], 2][q] |
Out[21]= | -23 2 5 7 2 14 11 9 25 13 19 34 -7 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + --- - 22 20 19 18 17 16 15 14 13 12 11 q q q q q q q q q q q 12 25 35 8 23 26 3 16 14 3 4 > --- - -- + -- - -- - -- + -- - -- - -- + -- + 5 q - 2 q + q 10 9 8 7 6 5 4 3 2 q q q q q q q q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 912 |
|