© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1091Visit 1091's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1091's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X6271 X20,6,1,5 X16,9,17,10 X10,3,11,4 X2,18,3,17 X14,7,15,8 X8,15,9,16 X12,20,13,19 X18,12,19,11 X4,13,5,14 |
Gauss Code: | {1, -5, 4, -10, 2, -1, 6, -7, 3, -4, 9, -8, 10, -6, 7, -3, 5, -9, 8, -2} |
DT (Dowker-Thistlethwaite) Code: | 6 10 20 14 16 18 4 8 2 12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-4 - 4t-3 + 9t-2 - 14t-1 + 17 - 14t + 9t2 - 4t3 + t4 |
Conway Polynomial: | 1 + 2z2 + 5z4 + 4z6 + z8 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {73, 0} |
Jones Polynomial: | - q-5 + 3q-4 - 6q-3 + 9q-2 - 11q-1 + 13 - 11q + 9q2 - 6q3 + 3q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1043, ...} |
A2 (sl(3)) Invariant: | - q-14 + q-12 - 2q-10 + q-8 - q-4 + 4q-2 - 1 + 4q2 - q4 + q8 - 2q10 + q12 - q14 |
HOMFLY-PT Polynomial: | - 2a-2 - 5a-2z2 - 4a-2z4 - a-2z6 + 5 + 12z2 + 13z4 + 6z6 + z8 - 2a2 - 5a2z2 - 4a2z4 - a2z6 |
Kauffman Polynomial: | - 2a-5z3 + a-5z5 + a-4z2 - 6a-4z4 + 3a-4z6 - 3a-3z + 9a-3z3 - 12a-3z5 + 5a-3z7 + 2a-2 - 9a-2z2 + 16a-2z4 - 13a-2z6 + 5a-2z8 - 6a-1z + 18a-1z3 - 13a-1z5 + 2a-1z7 + 2a-1z9 + 5 - 19z2 + 35z4 - 26z6 + 9z8 - 4az + 9az3 - 7az5 + az7 + 2az9 + 2a2 - 7a2z2 + 7a2z4 - 7a2z6 + 4a2z8 - 6a3z5 + 4a3z7 + 2a4z2 - 6a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1091. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 3q-14 + q-13 + 8q-12 - 15q-11 + 2q-10 + 30q-9 - 40q-8 - 7q-7 + 71q-6 - 64q-5 - 32q-4 + 113q-3 - 71q-2 - 60q-1 + 132 - 58q - 73q2 + 114q3 - 31q4 - 66q5 + 72q6 - 5q7 - 43q8 + 30q9 + 5q10 - 17q11 + 7q12 + 2q13 - 3q14 + q15 |
3 | - q-30 + 3q-29 - q-28 - 3q-27 - 2q-26 + 9q-25 + q-24 - 17q-23 + 34q-21 + q-20 - 63q-19 - 15q-18 + 109q-17 + 46q-16 - 159q-15 - 107q-14 + 204q-13 + 197q-12 - 233q-11 - 302q-10 + 231q-9 + 417q-8 - 210q-7 - 512q-6 + 158q-5 + 597q-4 - 109q-3 - 635q-2 + 33q-1 + 668 + 16q - 639q2 - 92q3 + 607q4 + 142q5 - 527q6 - 200q7 + 438q8 + 229q9 - 323q10 - 244q11 + 215q12 + 225q13 - 115q14 - 187q15 + 44q16 + 136q17 - 5q18 - 83q19 - 14q20 + 47q21 + 12q22 - 22q23 - 7q24 + 10q25 + 2q26 - 3q27 - 2q28 + 3q29 - q30 |
4 | q-50 - 3q-49 + q-48 + 3q-47 - 3q-46 + 8q-45 - 12q-44 + 3q-43 + 7q-42 - 21q-41 + 27q-40 - 25q-39 + 31q-38 + 36q-37 - 85q-36 + 4q-35 - 90q-34 + 129q-33 + 210q-32 - 114q-31 - 114q-30 - 418q-29 + 139q-28 + 621q-27 + 204q-26 - 84q-25 - 1122q-24 - 356q-23 + 923q-22 + 994q-21 + 607q-20 - 1770q-19 - 1466q-18 + 538q-17 + 1777q-16 + 2001q-15 - 1770q-14 - 2629q-13 - 544q-12 + 1985q-11 + 3469q-10 - 1130q-9 - 3262q-8 - 1731q-7 + 1622q-6 + 4422q-5 - 310q-4 - 3304q-3 - 2574q-2 + 1021q-1 + 4757 + 416q - 2936q2 - 3026q3 + 313q4 + 4534q5 + 1083q6 - 2165q7 - 3121q8 - 552q9 + 3716q10 + 1617q11 - 988q12 - 2687q13 - 1370q14 + 2323q15 + 1671q16 + 236q17 - 1666q18 - 1649q19 + 838q20 + 1083q21 + 866q22 - 519q23 - 1200q24 - 47q25 + 300q26 + 721q27 + 114q28 - 509q29 - 187q30 - 104q31 + 302q32 + 174q33 - 116q34 - 55q35 - 111q36 + 69q37 + 63q38 - 22q39 + 7q40 - 36q41 + 12q42 + 13q43 - 9q44 + 5q45 - 6q46 + 3q47 + 2q48 - 3q49 + q50 |
5 | - q-75 + 3q-74 - q-73 - 3q-72 + 3q-71 - 3q-70 - 5q-69 + 8q-68 + 7q-67 - 3q-66 + 10q-65 - 8q-64 - 35q-63 - 13q-62 + 15q-61 + 37q-60 + 71q-59 + 39q-58 - 81q-57 - 167q-56 - 129q-55 + 38q-54 + 290q-53 + 386q-52 + 123q-51 - 396q-50 - 768q-49 - 549q-48 + 304q-47 + 1226q-46 + 1341q-45 + 220q-44 - 1556q-43 - 2477q-42 - 1367q-41 + 1360q-40 + 3688q-39 + 3308q-38 - 259q-37 - 4576q-36 - 5802q-35 - 2015q-34 + 4509q-33 + 8413q-32 + 5492q-31 - 3075q-30 - 10525q-29 - 9724q-28 + 107q-27 + 11461q-26 + 14111q-25 + 4216q-24 - 10953q-23 - 17972q-22 - 9222q-21 + 8955q-20 + 20710q-19 + 14372q-18 - 5907q-17 - 22211q-16 - 18873q-15 + 2280q-14 + 22476q-13 + 22542q-12 + 1273q-11 - 21909q-10 - 25029q-9 - 4555q-8 + 20773q-7 + 26783q-6 + 7162q-5 - 19461q-4 - 27598q-3 - 9449q-2 + 17899q-1 + 28211 + 11273q - 16309q2 - 28094q3 - 13147q4 + 14198q5 + 27835q6 + 14891q7 - 11701q8 - 26697q9 - 16658q10 + 8390q11 + 24907q12 + 18078q13 - 4603q14 - 21909q15 - 18898q16 + 426q17 + 17969q18 + 18635q19 + 3492q20 - 13088q21 - 17145q22 - 6670q23 + 7991q24 + 14342q25 + 8499q26 - 3151q27 - 10669q28 - 8849q29 - 607q30 + 6696q31 + 7757q32 + 2962q33 - 3089q34 - 5798q35 - 3840q36 + 459q37 + 3554q38 + 3515q39 + 1056q40 - 1597q41 - 2596q42 - 1548q43 + 325q44 + 1509q45 + 1371q46 + 328q47 - 678q48 - 938q49 - 468q50 + 182q51 + 514q52 + 372q53 + 14q54 - 209q55 - 228q56 - 72q57 + 88q58 + 107q59 + 34q60 - 14q61 - 35q62 - 35q63 + 10q64 + 22q65 - 2q66 - 2q67 + 3q68 - 6q69 - q70 + 6q71 - 3q72 - 2q73 + 3q74 - q75 |
6 | q-105 - 3q-104 + q-103 + 3q-102 - 3q-101 + 3q-100 + 9q-98 - 18q-97 - 11q-96 + 14q-95 - 12q-94 + 18q-93 + 22q-92 + 53q-91 - 49q-90 - 72q-89 - 13q-88 - 75q-87 + 29q-86 + 117q-85 + 274q-84 + 8q-83 - 167q-82 - 185q-81 - 446q-80 - 212q-79 + 214q-78 + 952q-77 + 668q-76 + 186q-75 - 351q-74 - 1606q-73 - 1724q-72 - 741q-71 + 1756q-70 + 2744q-69 + 2850q-68 + 1543q-67 - 2630q-66 - 5680q-65 - 5984q-64 - 1070q-63 + 4074q-62 + 9183q-61 + 10522q-60 + 2995q-59 - 7703q-58 - 16581q-57 - 14610q-56 - 5617q-55 + 11319q-54 + 26333q-53 + 24391q-52 + 7008q-51 - 19814q-50 - 36070q-49 - 36791q-48 - 10217q-47 + 30361q-46 + 54839q-45 + 48882q-44 + 7897q-43 - 40748q-42 - 77508q-41 - 64028q-40 - 3491q-39 + 64147q-38 + 99955q-37 + 71507q-36 - 2444q-35 - 93435q-34 - 125975q-33 - 74816q-32 + 28175q-31 + 123658q-30 + 141464q-29 + 72105q-28 - 64249q-27 - 159220q-26 - 149852q-25 - 40544q-24 + 104375q-23 + 182468q-22 + 146927q-21 - 6737q-20 - 152758q-19 - 196275q-18 - 106664q-17 + 61072q-16 + 187585q-15 + 194108q-14 + 46924q-13 - 125587q-12 - 210655q-11 - 148142q-10 + 21046q-9 + 174522q-8 + 213551q-7 + 81117q-6 - 99321q-5 - 209024q-4 - 168365q-3 - 6143q-2 + 159665q-1 + 219914 + 102264q - 78262q2 - 203498q3 - 181179q4 - 29311q5 + 143230q6 + 222040q7 + 123426q8 - 51704q9 - 191017q10 - 192734q11 - 60656q12 + 113025q13 + 213957q14 + 147835q15 - 8568q16 - 157902q17 - 193612q18 - 99921q19 + 59278q20 + 180174q21 + 161601q22 + 46498q23 - 95838q24 - 165565q25 - 127717q26 - 8420q27 + 113841q28 + 143067q29 + 87988q30 - 19619q31 - 102892q32 - 119154q33 - 59002q34 + 34718q35 + 88092q36 + 89040q37 + 35411q38 - 29596q39 - 72831q40 - 65917q41 - 19536q42 + 24454q43 + 52441q44 + 45406q45 + 16729q46 - 19839q47 - 37265q48 - 29867q49 - 12269q50 + 11495q51 + 23849q52 + 23234q53 + 7861q54 - 6802q55 - 14134q56 - 15523q57 - 7034q58 + 2728q59 + 10410q60 + 9191q61 + 4858q62 - 478q63 - 5967q64 - 6342q65 - 3700q66 + 1050q67 + 2869q68 + 3551q69 + 2537q70 - 313q71 - 1887q72 - 2194q73 - 793q74 - 80q75 + 849q76 + 1234q77 + 484q78 - 147q79 - 559q80 - 284q81 - 276q82 + 16q83 + 302q84 + 169q85 + 34q86 - 97q87 - 11q88 - 77q89 - 36q90 + 58q91 + 27q92 + 7q93 - 25q94 + 15q95 - 8q96 - 14q97 + 12q98 + 2q99 + q100 - 6q101 + 3q102 + 2q103 - 3q104 + q105 |
7 | - q-140 + 3q-139 - q-138 - 3q-137 + 3q-136 - 3q-135 - 4q-133 + q-132 + 22q-131 - 12q-129 + 2q-128 - 22q-127 - 12q-126 - 24q-125 - 7q-124 + 97q-123 + 52q-122 + 5q-121 - 96q-119 - 84q-118 - 138q-117 - 99q-116 + 241q-115 + 277q-114 + 228q-113 + 134q-112 - 264q-111 - 388q-110 - 618q-109 - 593q-108 + 321q-107 + 912q-106 + 1319q-105 + 1210q-104 - 75q-103 - 1169q-102 - 2534q-101 - 3135q-100 - 1230q-99 + 1356q-98 + 4485q-97 + 6340q-96 + 4384q-95 + 431q-94 - 5868q-93 - 11531q-92 - 11397q-91 - 6219q-90 + 4852q-89 + 17185q-88 + 22466q-87 + 19079q-86 + 3547q-85 - 19084q-84 - 36242q-83 - 41254q-82 - 24744q-81 + 10071q-80 + 46335q-79 + 70393q-78 + 62796q-77 + 19953q-76 - 40710q-75 - 98125q-74 - 116915q-73 - 78580q-72 + 5076q-71 + 107793q-70 + 175493q-69 + 166205q-68 + 74444q-67 - 77732q-66 - 217968q-65 - 271514q-64 - 201155q-63 - 10817q-62 + 215994q-61 + 368655q-60 + 364088q-59 + 167515q-58 - 143221q-57 - 424989q-56 - 536608q-55 - 382931q-54 - 14127q-53 + 407382q-52 + 680531q-51 + 630712q-50 + 252223q-49 - 295978q-48 - 759540q-47 - 871645q-46 - 545478q-45 + 90940q-44 + 747466q-43 + 1064750q-42 + 855626q-41 + 187587q-40 - 638782q-39 - 1180870q-38 - 1140697q-37 - 502674q-36 + 448642q-35 + 1206888q-34 + 1366862q-33 + 814744q-32 - 207003q-31 - 1151186q-30 - 1516805q-29 - 1088279q-28 - 49707q-27 + 1035402q-26 + 1589981q-25 + 1302550q-24 + 289369q-23 - 889095q-22 - 1600154q-21 - 1451106q-20 - 490362q-19 + 738971q-18 + 1569085q-17 + 1541628q-16 + 643232q-15 - 605726q-14 - 1517934q-13 - 1587939q-12 - 751578q-11 + 497790q-10 + 1464942q-9 + 1609342q-8 + 825039q-7 - 417387q-6 - 1419481q-5 - 1619062q-4 - 878768q-3 + 354411q-2 + 1384848q-1 + 1631196 + 926937q - 300176q2 - 1356453q3 - 1647416q4 - 982038q5 + 237205q6 + 1324510q7 + 1670034q8 + 1052033q9 - 155218q10 - 1275815q11 - 1688281q12 - 1138216q13 + 40634q14 + 1194554q15 + 1691414q16 + 1235684q17 + 109185q18 - 1067682q19 - 1660056q20 - 1329981q21 - 292144q22 + 885628q23 + 1577280q24 + 1401264q25 + 493157q26 - 649734q27 - 1428063q28 - 1424863q29 - 688799q30 + 372926q31 + 1208434q32 + 1379085q33 + 847907q34 - 81393q35 - 927406q36 - 1251817q37 - 940980q38 - 189095q39 + 611059q40 + 1045961q41 + 946025q42 + 401905q43 - 295636q44 - 783000q45 - 859848q46 - 528379q47 + 23069q48 + 498890q49 + 697131q50 + 557006q51 + 174113q52 - 234937q53 - 491176q54 - 498532q55 - 278825q56 + 28014q57 + 282191q58 + 380223q59 + 295626q60 + 102642q61 - 106294q62 - 240273q63 - 248112q64 - 156006q65 - 13360q66 + 112693q67 + 167802q68 + 149589q69 + 73631q70 - 20184q71 - 86340q72 - 109777q73 - 85168q74 - 30157q75 + 23695q76 + 61275q77 + 67945q78 + 45867q79 + 12339q80 - 22049q81 - 41137q82 - 39645q83 - 24994q84 - 1768q85 + 17552q86 + 25430q87 + 23390q88 + 11191q89 - 2920q90 - 12223q91 - 15909q92 - 11393q93 - 3482q94 + 3476q95 + 8480q96 + 8226q97 + 4648q98 + 359q99 - 3647q100 - 4503q101 - 3331q102 - 1551q103 + 966q104 + 2114q105 + 2062q106 + 1276q107 - 210q108 - 796q109 - 853q110 - 761q111 - 160q112 + 214q113 + 423q114 + 439q115 + 34q116 - 102q117 - 98q118 - 146q119 - 43q120 - 22q121 + 46q122 + 107q123 - 28q125 - 10q126 - 13q127 + 9q128 - 12q129 - 5q130 + 24q131 - q132 - 8q133 - 2q134 - q135 + 6q136 - 3q137 - 2q138 + 3q139 - q140 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 91]] |
Out[2]= | PD[X[6, 2, 7, 1], X[20, 6, 1, 5], X[16, 9, 17, 10], X[10, 3, 11, 4], > X[2, 18, 3, 17], X[14, 7, 15, 8], X[8, 15, 9, 16], X[12, 20, 13, 19], > X[18, 12, 19, 11], X[4, 13, 5, 14]] |
In[3]:= | GaussCode[Knot[10, 91]] |
Out[3]= | GaussCode[1, -5, 4, -10, 2, -1, 6, -7, 3, -4, 9, -8, 10, -6, 7, -3, 5, -9, 8, > -2] |
In[4]:= | DTCode[Knot[10, 91]] |
Out[4]= | DTCode[6, 10, 20, 14, 16, 18, 4, 8, 2, 12] |
In[5]:= | br = BR[Knot[10, 91]] |
Out[5]= | BR[3, {-1, -1, -1, 2, -1, 2, 2, -1, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 91]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 91]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 91]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 1, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 91]][t] |
Out[10]= | -4 4 9 14 2 3 4 17 + t - -- + -- - -- - 14 t + 9 t - 4 t + t 3 2 t t t |
In[11]:= | Conway[Knot[10, 91]][z] |
Out[11]= | 2 4 6 8 1 + 2 z + 5 z + 4 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 91]} |
In[13]:= | {KnotDet[Knot[10, 91]], KnotSignature[Knot[10, 91]]} |
Out[13]= | {73, 0} |
In[14]:= | Jones[Knot[10, 91]][q] |
Out[14]= | -5 3 6 9 11 2 3 4 5 13 - q + -- - -- + -- - -- - 11 q + 9 q - 6 q + 3 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 43], Knot[10, 91]} |
In[16]:= | A2Invariant[Knot[10, 91]][q] |
Out[16]= | -14 -12 2 -8 -4 4 2 4 8 10 12 14 -1 - q + q - --- + q - q + -- + 4 q - q + q - 2 q + q - q 10 2 q q |
In[17]:= | HOMFLYPT[Knot[10, 91]][a, z] |
Out[17]= | 2 4 6 2 2 2 5 z 2 2 4 4 z 2 4 6 z 5 - -- - 2 a + 12 z - ---- - 5 a z + 13 z - ---- - 4 a z + 6 z - -- - 2 2 2 2 a a a a 2 6 8 > a z + z |
In[18]:= | Kauffman[Knot[10, 91]][a, z] |
Out[18]= | 2 2 2 2 3 z 6 z 5 2 z 9 z 2 2 5 + -- + 2 a - --- - --- - 4 a z + a z - 19 z + -- - ---- - 7 a z + 2 3 a 4 2 a a a a 3 3 3 4 4 4 2 2 z 9 z 18 z 3 5 3 4 6 z 16 z > 2 a z - ---- + ---- + ----- + 9 a z - 2 a z + 35 z - ---- + ----- + 5 3 a 4 2 a a a a 5 5 5 2 4 4 4 z 12 z 13 z 5 3 5 5 5 6 > 7 a z - 6 a z + -- - ----- - ----- - 7 a z - 6 a z + a z - 26 z + 5 3 a a a 6 6 7 7 3 z 13 z 2 6 4 6 5 z 2 z 7 3 7 8 > ---- - ----- - 7 a z + 3 a z + ---- + ---- + a z + 4 a z + 9 z + 4 2 3 a a a a 8 9 5 z 2 8 2 z 9 > ---- + 4 a z + ---- + 2 a z 2 a a |
In[19]:= | {Vassiliev[2][Knot[10, 91]], Vassiliev[3][Knot[10, 91]]} |
Out[19]= | {2, 0} |
In[20]:= | Kh[Knot[10, 91]][q, t] |
Out[20]= | 7 1 2 1 4 2 5 4 6 5 - + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 5 3 7 3 7 4 9 4 > 5 q t + 6 q t + 4 q t + 5 q t + 2 q t + 4 q t + q t + 2 q t + 11 5 > q t |
In[21]:= | ColouredJones[Knot[10, 91], 2][q] |
Out[21]= | -15 3 -13 8 15 2 30 40 7 71 64 32 113 132 + q - --- + q + --- - --- + --- + -- - -- - -- + -- - -- - -- + --- - 14 12 11 10 9 8 7 6 5 4 3 q q q q q q q q q q q 71 60 2 3 4 5 6 7 8 > -- - -- - 58 q - 73 q + 114 q - 31 q - 66 q + 72 q - 5 q - 43 q + 2 q q 9 10 11 12 13 14 15 > 30 q + 5 q - 17 q + 7 q + 2 q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1091 |
|