© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1082Visit 1082's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1082's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X7,16,8,17 X3948 X15,3,16,2 X5,15,6,14 X9,5,10,4 X11,18,12,19 X13,20,14,1 X17,10,18,11 X19,12,20,13 |
Gauss Code: | {-1, 4, -3, 6, -5, 1, -2, 3, -6, 9, -7, 10, -8, 5, -4, 2, -9, 7, -10, 8} |
DT (Dowker-Thistlethwaite) Code: | 6 8 14 16 4 18 20 2 10 12 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-4 + 4t-3 - 8t-2 + 12t-1 - 13 + 12t - 8t2 + 4t3 - t4 |
Conway Polynomial: | 1 - 4z4 - 4z6 - z8 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {63, -2} |
Jones Polynomial: | q-7 - 3q-6 + 5q-5 - 8q-4 + 10q-3 - 10q-2 + 10q-1 - 7 + 5q - 3q2 + q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-20 - q-18 + q-16 - 2q-14 - q-12 + q-10 - q-8 + 4q-6 - q-4 + 2q-2 - q2 + q4 - q6 + q8 |
HOMFLY-PT Polynomial: | 1 + 4z2 + 4z4 + z6 - 8a2z2 - 12a2z4 - 6a2z6 - a2z8 + 4a4z2 + 4a4z4 + a4z6 |
Kauffman Polynomial: | a-2z2 - 3a-2z4 + a-2z6 - a-1z + 7a-1z3 - 10a-1z5 + 3a-1z7 + 1 - 6z2 + 14z4 - 14z6 + 4z8 - 2az + 10az3 - 8az5 - 2az7 + 2az9 - 13a2z2 + 32a2z4 - 27a2z6 + 8a2z8 + 5a3z3 - 4a3z5 - a3z7 + 2a3z9 - 5a4z2 + 10a4z4 - 8a4z6 + 4a4z8 + 2a5z - 2a5z3 - 3a5z5 + 4a5z7 - 4a6z4 + 4a6z6 + a7z - 4a7z3 + 3a7z5 - a8z2 + a8z4 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {0, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 1082. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-20 - 3q-19 + q-18 + 7q-17 - 12q-16 + 4q-15 + 17q-14 - 31q-13 + 11q-12 + 36q-11 - 58q-10 + 13q-9 + 60q-8 - 75q-7 + 5q-6 + 74q-5 - 70q-4 - 9q-3 + 71q-2 - 49q-1 - 20 + 54q - 23q2 - 23q3 + 30q4 - 4q5 - 14q6 + 9q7 + q8 - 3q9 + q10 |
3 | q-39 - 3q-38 + q-37 + 3q-36 + 3q-35 - 8q-34 - 5q-33 + 10q-32 + 6q-31 - 8q-30 - 6q-29 + 10q-28 - 7q-27 - 11q-26 + 25q-25 + 28q-24 - 56q-23 - 54q-22 + 80q-21 + 103q-20 - 103q-19 - 153q-18 + 105q-17 + 203q-16 - 90q-15 - 247q-14 + 71q-13 + 263q-12 - 31q-11 - 276q-10 + 2q-9 + 259q-8 + 45q-7 - 250q-6 - 72q-5 + 211q-4 + 119q-3 - 183q-2 - 140q-1 + 130 + 166q - 83q2 - 165q3 + 30q4 + 149q5 + 13q6 - 119q7 - 39q8 + 81q9 + 46q10 - 44q11 - 41q12 + 19q13 + 28q14 - 6q15 - 14q16 + q17 + 5q18 + q19 - 3q20 + q21 |
4 | q-64 - 3q-63 + q-62 + 3q-61 - q-60 + 7q-59 - 17q-58 - q-57 + 8q-56 + 3q-55 + 40q-54 - 44q-53 - 21q-52 - 13q-51 - 3q-50 + 132q-49 - 33q-48 - 41q-47 - 113q-46 - 99q-45 + 265q-44 + 102q-43 + 58q-42 - 273q-41 - 420q-40 + 270q-39 + 353q-38 + 457q-37 - 289q-36 - 942q-35 - 62q-34 + 466q-33 + 1095q-32 + 61q-31 - 1346q-30 - 631q-29 + 218q-28 + 1593q-27 + 629q-26 - 1369q-25 - 1049q-24 - 245q-23 + 1697q-22 + 1053q-21 - 1119q-20 - 1125q-19 - 624q-18 + 1505q-17 + 1194q-16 - 796q-15 - 969q-14 - 859q-13 + 1170q-12 + 1169q-11 - 426q-10 - 699q-9 - 1021q-8 + 702q-7 + 1021q-6 + 8q-5 - 287q-4 - 1066q-3 + 132q-2 + 671q-1 + 347 + 230q - 838q2 - 315q3 + 142q4 + 361q5 + 613q6 - 362q7 - 387q8 - 282q9 + 75q10 + 610q11 + 54q12 - 142q13 - 346q14 - 183q15 + 317q16 + 156q17 + 76q18 - 160q19 - 192q20 + 70q21 + 63q22 + 92q23 - 20q24 - 80q25 + 2q26 + 31q28 + 6q29 - 17q30 + q31 - 3q32 + 5q33 + q34 - 3q35 + q36 |
5 | q-95 - 3q-94 + q-93 + 3q-92 - q-91 + 3q-90 - 2q-89 - 13q-88 - 3q-87 + 16q-86 + 12q-85 + 17q-84 - 6q-83 - 53q-82 - 43q-81 + 16q-80 + 73q-79 + 93q-78 + 30q-77 - 120q-76 - 198q-75 - 88q-74 + 155q-73 + 332q-72 + 237q-71 - 145q-70 - 546q-69 - 520q-68 + 90q-67 + 802q-66 + 944q-65 + 178q-64 - 1061q-63 - 1640q-62 - 696q-61 + 1232q-60 + 2498q-59 + 1653q-58 - 1115q-57 - 3508q-56 - 3037q-55 + 532q-54 + 4407q-53 + 4837q-52 + 622q-51 - 4992q-50 - 6754q-49 - 2356q-48 + 4982q-47 + 8603q-46 + 4437q-45 - 4402q-44 - 9951q-43 - 6585q-42 + 3252q-41 + 10718q-40 + 8497q-39 - 1855q-38 - 10864q-37 - 9888q-36 + 438q-35 + 10478q-34 + 10747q-33 + 827q-32 - 9890q-31 - 11082q-30 - 1726q-29 + 9088q-28 + 11079q-27 + 2456q-26 - 8367q-25 - 10877q-24 - 2918q-23 + 7526q-22 + 10556q-21 + 3459q-20 - 6722q-19 - 10143q-18 - 3920q-17 + 5625q-16 + 9608q-15 + 4544q-14 - 4455q-13 - 8830q-12 - 5011q-11 + 2920q-10 + 7770q-9 + 5459q-8 - 1414q-7 - 6364q-6 - 5449q-5 - 199q-4 + 4654q-3 + 5150q-2 + 1451q-1 - 2819 - 4246q - 2321q2 + 999q3 + 3042q4 + 2563q5 + 444q6 - 1566q7 - 2220q8 - 1382q9 + 186q10 + 1436q11 + 1665q12 + 859q13 - 459q14 - 1401q15 - 1376q16 - 423q17 + 795q18 + 1393q19 + 962q20 - 135q21 - 1021q22 - 1102q23 - 383q24 + 536q25 + 929q26 + 598q27 - 108q28 - 595q29 - 571q30 - 154q31 + 287q32 + 417q33 + 215q34 - 83q35 - 220q36 - 179q37 - 27q38 + 106q39 + 108q40 + 31q41 - 32q42 - 41q43 - 31q44 + 4q45 + 26q46 + 8q47 - 5q48 - 2q49 - 3q50 - 3q51 + 5q52 + q53 - 3q54 + q55 |
6 | q-132 - 3q-131 + q-130 + 3q-129 - q-128 + 3q-127 - 6q-126 + 2q-125 - 15q-124 + 5q-123 + 25q-122 + 16q-120 - 23q-119 - 15q-118 - 72q-117 + 2q-116 + 87q-115 + 43q-114 + 87q-113 - 24q-112 - 60q-111 - 261q-110 - 84q-109 + 153q-108 + 156q-107 + 311q-106 + 96q-105 - 98q-104 - 661q-103 - 364q-102 + 163q-101 + 386q-100 + 820q-99 + 463q-98 - 185q-97 - 1533q-96 - 1161q-95 + 20q-94 + 1069q-93 + 2312q-92 + 1755q-91 - 260q-90 - 3710q-89 - 3953q-88 - 1540q-87 + 2139q-86 + 6378q-85 + 6599q-84 + 1861q-83 - 7032q-82 - 11256q-81 - 8631q-80 + 130q-79 + 12565q-78 + 18345q-77 + 11918q-76 - 6427q-75 - 21824q-74 - 25040q-73 - 12191q-72 + 13927q-71 + 34266q-70 + 33388q-69 + 6394q-68 - 26624q-67 - 45851q-66 - 37044q-65 + 1708q-64 + 43188q-63 + 58619q-62 + 31733q-61 - 16982q-60 - 58169q-59 - 64074q-58 - 22204q-57 + 37124q-56 + 73753q-55 + 57328q-54 + 3232q-53 - 55378q-52 - 79670q-51 - 44801q-50 + 21515q-49 + 74062q-48 + 71209q-47 + 21451q-46 - 44089q-45 - 81421q-44 - 56589q-43 + 7641q-42 + 66752q-41 + 73370q-40 + 31002q-39 - 33819q-38 - 76726q-37 - 59542q-36 - 459q-35 + 59376q-34 + 70996q-33 + 35246q-32 - 26411q-31 - 71364q-30 - 60252q-29 - 6878q-28 + 52193q-27 + 68311q-26 + 39891q-25 - 17582q-24 - 64549q-23 - 61493q-22 - 16261q-21 + 41071q-20 + 63647q-19 + 46271q-18 - 3779q-17 - 52249q-16 - 60533q-15 - 28472q-14 + 23344q-13 + 52582q-12 + 50279q-11 + 13503q-10 - 32205q-9 - 52042q-8 - 37824q-7 + 1665q-6 + 32754q-5 + 45373q-4 + 27043q-3 - 8032q-2 - 33436q-1 - 36555 - 15292q + 8648q2 + 28942q3 + 28258q4 + 10285q5 - 10353q6 - 22543q7 - 18535q8 - 8616q9 + 8088q10 + 16169q11 + 13899q12 + 5123q13 - 4599q14 - 8683q15 - 10970q16 - 4553q17 + 1266q18 + 5394q19 + 6288q20 + 4694q21 + 2559q22 - 3084q23 - 4200q24 - 4788q25 - 2954q26 - 323q27 + 2875q28 + 5316q29 + 3033q30 + 1294q31 - 2004q32 - 3673q33 - 3927q34 - 1595q35 + 1802q36 + 2606q37 + 3160q38 + 1390q39 - 528q40 - 2430q41 - 2351q42 - 801q43 + 150q44 + 1487q45 + 1486q46 + 952q47 - 356q48 - 907q49 - 726q50 - 592q51 + 110q52 + 435q53 + 588q54 + 165q55 - 83q56 - 138q57 - 269q58 - 108q59 + 13q60 + 149q61 + 57q62 + 18q63 + 16q64 - 50q65 - 31q66 - 15q67 + 29q68 + 3q69 - 3q70 + 10q71 - 6q72 - 3q73 - 3q74 + 5q75 + q76 - 3q77 + q78 |
7 | q-175 - 3q-174 + q-173 + 3q-172 - q-171 + 3q-170 - 6q-169 - 2q-168 - 7q-166 + 14q-165 + 13q-164 - q-163 + 10q-162 - 24q-161 - 29q-160 - 18q-159 - 33q-158 + 60q-157 + 71q-156 + 39q-155 + 58q-154 - 51q-153 - 99q-152 - 131q-151 - 182q-150 + 57q-149 + 184q-148 + 186q-147 + 286q-146 + 53q-145 - 96q-144 - 273q-143 - 551q-142 - 204q-141 + 70q-140 + 249q-139 + 583q-138 + 329q-137 + 196q-136 - 9q-135 - 579q-134 - 307q-133 - 185q-132 - 192q-131 + 110q-130 - 433q-129 - 347q-128 + 229q-127 + 595q-126 + 1916q-125 + 2197q-124 + 1140q-123 - 748q-122 - 4481q-121 - 6478q-120 - 5172q-119 - 883q-118 + 7051q-117 + 13180q-116 + 13906q-115 + 7487q-114 - 7330q-113 - 22099q-112 - 28819q-111 - 21905q-110 + 1405q-109 + 29851q-108 + 49468q-107 + 47526q-106 + 16175q-105 - 31339q-104 - 73050q-103 - 84989q-102 - 49942q-101 + 19427q-100 + 92925q-99 + 131276q-98 + 102195q-97 + 12623q-96 - 100329q-95 - 179246q-94 - 170403q-93 - 68242q-92 + 86908q-91 + 218615q-90 + 246292q-89 + 145329q-88 - 47240q-87 - 238645q-86 - 318697q-85 - 236211q-84 - 17228q-83 + 232986q-82 + 375102q-81 + 327782q-80 + 99580q-79 - 200167q-78 - 407073q-77 - 407913q-76 - 187803q-75 + 146770q-74 + 411992q-73 + 466223q-72 + 268990q-71 - 82426q-70 - 393445q-69 - 499139q-68 - 333930q-67 + 18722q-66 + 360309q-65 + 508816q-64 + 377573q-63 + 35128q-62 - 321524q-61 - 501391q-60 - 401454q-59 - 75241q-58 + 285538q-57 + 485514q-56 + 410025q-55 + 101019q-54 - 256389q-53 - 467104q-52 - 410023q-51 - 116843q-50 + 234645q-49 + 451159q-48 + 407318q-47 + 127069q-46 - 218015q-45 - 438133q-44 - 405703q-43 - 137432q-42 + 202430q-41 + 427414q-40 + 407191q-39 + 151132q-38 - 183943q-37 - 415711q-36 - 411425q-35 - 170943q-34 + 158918q-33 + 400284q-32 + 416587q-31 + 196753q-30 - 124735q-29 - 377010q-28 - 419971q-27 - 228062q-26 + 80554q-25 + 343536q-24 + 417350q-23 + 261167q-22 - 26454q-21 - 296738q-20 - 404840q-19 - 292507q-18 - 34453q-17 + 236813q-16 + 377966q-15 + 315163q-14 + 97583q-13 - 164262q-12 - 334103q-11 - 323974q-10 - 155868q-9 + 84760q-8 + 273053q-7 + 312574q-6 + 200891q-5 - 4731q-4 - 197716q-3 - 279447q-2 - 225596q-1 - 65594 + 116048q + 225545q2 + 224549q3 + 117268q4 - 37398q5 - 157725q6 - 198453q7 - 143331q8 - 26730q9 + 86431q10 + 152136q11 + 141795q12 + 68266q13 - 23117q14 - 96077q15 - 117236q16 - 83392q17 - 22043q18 + 42293q19 + 78577q20 + 74957q21 + 44366q22 - 1252q23 - 37738q24 - 51161q25 - 45132q26 - 21326q27 + 5227q28 + 22737q29 + 31084q30 + 25589q31 + 13252q32 + 905q33 - 11832q34 - 17364q35 - 17258q36 - 13756q37 - 4503q38 + 4073q39 + 11257q40 + 15963q41 + 13181q42 + 6900q43 - 1690q44 - 10644q45 - 13642q46 - 12313q47 - 6316q48 + 2980q49 + 9178q50 + 11975q51 + 9746q52 + 2987q53 - 3200q54 - 7979q55 - 9224q56 - 5822q57 - 1238q58 + 3622q59 + 6370q60 + 5443q61 + 3190q62 - 240q63 - 3138q64 - 3837q65 - 3255q66 - 1195q67 + 1023q68 + 1927q69 + 2168q70 + 1419q71 + 155q72 - 641q73 - 1244q74 - 1034q75 - 345q76 + 82q77 + 476q78 + 515q79 + 311q80 + 146q81 - 157q82 - 274q83 - 150q84 - 79q85 + 39q86 + 67q87 + 46q88 + 76q89 + 6q90 - 41q91 - 26q92 - 16q93 + 10q94 + 6q95 - 8q96 + 12q97 + 6q98 - 6q99 - 3q100 - 3q101 + 5q102 + q103 - 3q104 + q105 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 82]] |
Out[2]= | PD[X[1, 6, 2, 7], X[7, 16, 8, 17], X[3, 9, 4, 8], X[15, 3, 16, 2], > X[5, 15, 6, 14], X[9, 5, 10, 4], X[11, 18, 12, 19], X[13, 20, 14, 1], > X[17, 10, 18, 11], X[19, 12, 20, 13]] |
In[3]:= | GaussCode[Knot[10, 82]] |
Out[3]= | GaussCode[-1, 4, -3, 6, -5, 1, -2, 3, -6, 9, -7, 10, -8, 5, -4, 2, -9, 7, -10, > 8] |
In[4]:= | DTCode[Knot[10, 82]] |
Out[4]= | DTCode[6, 8, 14, 16, 4, 18, 20, 2, 10, 12] |
In[5]:= | br = BR[Knot[10, 82]] |
Out[5]= | BR[3, {-1, -1, -1, -1, 2, -1, 2, -1, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 82]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 82]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 82]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 1, 4, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 82]][t] |
Out[10]= | -4 4 8 12 2 3 4 -13 - t + -- - -- + -- + 12 t - 8 t + 4 t - t 3 2 t t t |
In[11]:= | Conway[Knot[10, 82]][z] |
Out[11]= | 4 6 8 1 - 4 z - 4 z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 82]} |
In[13]:= | {KnotDet[Knot[10, 82]], KnotSignature[Knot[10, 82]]} |
Out[13]= | {63, -2} |
In[14]:= | Jones[Knot[10, 82]][q] |
Out[14]= | -7 3 5 8 10 10 10 2 3 -7 + q - -- + -- - -- + -- - -- + -- + 5 q - 3 q + q 6 5 4 3 2 q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 82]} |
In[16]:= | A2Invariant[Knot[10, 82]][q] |
Out[16]= | -20 -18 -16 2 -12 -10 -8 4 -4 2 2 4 6 8 q - q + q - --- - q + q - q + -- - q + -- - q + q - q + q 14 6 2 q q q |
In[17]:= | HOMFLYPT[Knot[10, 82]][a, z] |
Out[17]= | 2 2 2 4 2 4 2 4 4 4 6 2 6 1 + 4 z - 8 a z + 4 a z + 4 z - 12 a z + 4 a z + z - 6 a z + 4 6 2 8 > a z - a z |
In[18]:= | Kauffman[Knot[10, 82]][a, z] |
Out[18]= | 2 3 z 5 7 2 z 2 2 4 2 8 2 7 z 1 - - - 2 a z + 2 a z + a z - 6 z + -- - 13 a z - 5 a z - a z + ---- + a 2 a a 4 3 3 3 5 3 7 3 4 3 z 2 4 > 10 a z + 5 a z - 2 a z - 4 a z + 14 z - ---- + 32 a z + 2 a 5 4 4 6 4 8 4 10 z 5 3 5 5 5 7 5 > 10 a z - 4 a z + a z - ----- - 8 a z - 4 a z - 3 a z + 3 a z - a 6 7 6 z 2 6 4 6 6 6 3 z 7 3 7 > 14 z + -- - 27 a z - 8 a z + 4 a z + ---- - 2 a z - a z + 2 a a 5 7 8 2 8 4 8 9 3 9 > 4 a z + 4 z + 8 a z + 4 a z + 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[10, 82]], Vassiliev[3][Knot[10, 82]]} |
Out[19]= | {0, 0} |
In[20]:= | Kh[Knot[10, 82]][q, t] |
Out[20]= | 5 6 1 2 1 3 2 5 3 5 -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 7 2 q q t q t q t q t q t q t q t q t 5 5 5 3 t 2 3 2 3 3 5 3 > ----- + ---- + ---- + --- + 4 q t + 2 q t + 3 q t + q t + 2 q t + 5 2 5 3 q q t q t q t 7 4 > q t |
In[21]:= | ColouredJones[Knot[10, 82], 2][q] |
Out[21]= | -20 3 -18 7 12 4 17 31 11 36 58 13 -20 + q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- + -- + 19 17 16 15 14 13 12 11 10 9 q q q q q q q q q q 60 75 5 74 70 9 71 49 2 3 4 > -- - -- + -- + -- - -- - -- + -- - -- + 54 q - 23 q - 23 q + 30 q - 8 7 6 5 4 3 2 q q q q q q q q 5 6 7 8 9 10 > 4 q - 14 q + 9 q + q - 3 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1082 |
|