© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 1060Visit 1060's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 1060's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X14,7,15,8 X6,15,7,16 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
Gauss Code: | {1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8} |
DT (Dowker-Thistlethwaite) Code: | 4 8 10 14 2 16 18 6 20 12 |
Minimum Braid Representative:
Length is 12, width is 5 Braid index is 5 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - t-3 + 7t-2 - 20t-1 + 29 - 20t + 7t2 - t3 |
Conway Polynomial: | 1 - z2 + z4 - z6 |
Other knots with the same Alexander/Conway Polynomial: | {K11n165, ...} |
Determinant and Signature: | {85, 0} |
Jones Polynomial: | q-6 - 3q-5 + 6q-4 - 10q-3 + 13q-2 - 14q-1 + 14 - 11q + 8q2 - 4q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {1086, ...} |
A2 (sl(3)) Invariant: | q-20 + q-18 - 2q-16 - 3q-10 + 3q-8 + q-4 + 2q-2 - 2 + 3q2 - 3q4 + q6 + 2q8 - 2q10 + q12 |
HOMFLY-PT Polynomial: | a-2 + a-2z2 + a-2z4 - 2 - 5z2 - 3z4 - z6 + 4a2 + 6a2z2 + 3a2z4 - 3a4 - 3a4z2 + a6 |
Kauffman Polynomial: | a-4z4 - 2a-3z3 + 4a-3z5 - a-2 + 4a-2z2 - 9a-2z4 + 8a-2z6 - 2a-1z + 5a-1z3 - 11a-1z5 + 9a-1z7 - 2 + 14z2 - 22z4 + 5z6 + 5z8 - 6az + 25az3 - 38az5 + 16az7 + az9 - 4a2 + 18a2z2 - 17a2z4 - 7a2z6 + 8a2z8 - 7a3z + 27a3z3 - 32a3z5 + 10a3z7 + a3z9 - 3a4 + 11a4z2 - 8a4z4 - 3a4z6 + 3a4z8 - 3a5z + 9a5z3 - 9a5z5 + 3a5z7 - a6 + 3a6z2 - 3a6z4 + a6z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-1, 1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1060. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-18 - 3q-17 + 11q-15 - 15q-14 - 8q-13 + 43q-12 - 34q-11 - 39q-10 + 97q-9 - 42q-8 - 93q-7 + 147q-6 - 28q-5 - 144q-4 + 165q-3 - q-2 - 162q-1 + 143 + 22q - 136q2 + 91q3 + 28q4 - 80q5 + 39q6 + 17q7 - 28q8 + 9q9 + 4q10 - 4q11 + q12 |
3 | q-36 - 3q-35 + 5q-33 + 6q-32 - 15q-31 - 15q-30 + 26q-29 + 39q-28 - 40q-27 - 81q-26 + 46q-25 + 149q-24 - 37q-23 - 237q-22 - 5q-21 + 340q-20 + 89q-19 - 446q-18 - 207q-17 + 525q-16 + 367q-15 - 580q-14 - 540q-13 + 594q-12 + 712q-11 - 566q-10 - 872q-9 + 510q-8 + 996q-7 - 422q-6 - 1087q-5 + 328q-4 + 1115q-3 - 205q-2 - 1111q-1 + 105 + 1028q + 10q2 - 920q3 - 81q4 + 752q5 + 144q6 - 585q7 - 157q8 + 411q9 + 150q10 - 268q11 - 116q12 + 154q13 + 80q14 - 80q15 - 49q16 + 41q17 + 20q18 - 15q19 - 8q20 + 5q21 + 4q22 - 4q23 + q24 |
4 | q-60 - 3q-59 + 5q-57 + 6q-55 - 22q-54 - 8q-53 + 26q-52 + 15q-51 + 42q-50 - 88q-49 - 75q-48 + 51q-47 + 88q-46 + 215q-45 - 192q-44 - 308q-43 - 65q-42 + 192q-41 + 736q-40 - 119q-39 - 712q-38 - 623q-37 + 7q-36 + 1659q-35 + 550q-34 - 881q-33 - 1717q-32 - 1016q-31 + 2512q-30 + 1950q-29 - 158q-28 - 2834q-27 - 3029q-26 + 2540q-25 + 3546q-24 + 1664q-23 - 3221q-22 - 5449q-21 + 1473q-20 + 4583q-19 + 4048q-18 - 2620q-17 - 7461q-16 - 281q-15 + 4757q-14 + 6248q-13 - 1359q-12 - 8618q-11 - 2126q-10 + 4205q-9 + 7773q-8 + 153q-7 - 8782q-6 - 3679q-5 + 3084q-4 + 8346q-3 + 1655q-2 - 7858q-1 - 4619 + 1513q + 7705q2 + 2829q3 - 5888q4 - 4591q5 - 126q6 + 5875q7 + 3210q8 - 3439q9 - 3513q10 - 1172q11 + 3491q12 + 2619q13 - 1425q14 - 1950q15 - 1280q16 + 1528q17 + 1520q18 - 375q19 - 714q20 - 800q21 + 473q22 + 615q23 - 63q24 - 143q25 - 320q26 + 110q27 + 169q28 - 22q29 - q30 - 82q31 + 22q32 + 32q33 - 12q34 + 5q35 - 12q36 + 5q37 + 4q38 - 4q39 + q40 |
5 | q-90 - 3q-89 + 5q-87 - q-84 - 15q-83 - 8q-82 + 26q-81 + 24q-80 + 9q-79 - 15q-78 - 73q-77 - 67q-76 + 48q-75 + 147q-74 + 138q-73 - q-72 - 251q-71 - 366q-70 - 103q-69 + 384q-68 + 691q-67 + 429q-66 - 412q-65 - 1206q-64 - 1078q-63 + 197q-62 + 1772q-61 + 2177q-60 + 535q-59 - 2191q-58 - 3687q-57 - 2081q-56 + 2059q-55 + 5464q-54 + 4579q-53 - 935q-52 - 7003q-51 - 7988q-50 - 1657q-49 + 7727q-48 + 11967q-47 + 5868q-46 - 6997q-45 - 15802q-44 - 11549q-43 + 4212q-42 + 18798q-41 + 18265q-40 + 607q-39 - 20175q-38 - 25111q-37 - 7415q-36 + 19480q-35 + 31482q-34 + 15479q-33 - 16696q-32 - 36536q-31 - 24126q-30 + 11998q-29 + 40014q-28 + 32659q-27 - 6032q-26 - 41809q-25 - 40432q-24 - 674q-23 + 42059q-22 + 47206q-21 + 7582q-20 - 41185q-19 - 52724q-18 - 14307q-17 + 39304q-16 + 57144q-15 + 20653q-14 - 36755q-13 - 60287q-12 - 26575q-11 + 33340q-10 + 62395q-9 + 31978q-8 - 29276q-7 - 62884q-6 - 36876q-5 + 24100q-4 + 62017q-3 + 40926q-2 - 18273q-1 - 58974 - 43822q + 11476q2 + 54206q3 + 45119q4 - 4751q5 - 47270q6 - 44414q7 - 1816q8 + 39116q9 + 41591q10 + 7035q11 - 30057q12 - 36811q13 - 10740q14 + 21362q15 + 30612q16 + 12335q17 - 13540q18 - 23812q19 - 12237q20 + 7522q21 + 17198q22 + 10649q23 - 3261q24 - 11461q25 - 8430q26 + 788q27 + 7057q28 + 5989q29 + 379q30 - 3950q31 - 3870q32 - 760q33 + 2043q34 + 2314q35 + 629q36 - 955q37 - 1214q38 - 448q39 + 390q40 + 628q41 + 243q42 - 173q43 - 268q44 - 107q45 + 58q46 + 98q47 + 63q48 - 28q49 - 53q50 - q51 + 13q52 + 8q54 + q55 - 12q56 + 5q57 + 4q58 - 4q59 + q60 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 60]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], > X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], X[20, 18, 1, 17], > X[18, 13, 19, 14], X[12, 19, 13, 20]] |
In[3]:= | GaussCode[Knot[10, 60]] |
Out[3]= | GaussCode[1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -10, 9, -6, 7, -5, 8, -9, 10, > -8] |
In[4]:= | DTCode[Knot[10, 60]] |
Out[4]= | DTCode[4, 8, 10, 14, 2, 16, 18, 6, 20, 12] |
In[5]:= | br = BR[Knot[10, 60]] |
Out[5]= | BR[5, {-1, 2, -1, 2, 2, -3, 2, -3, -2, -4, 3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 60]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 60]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 60]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 60]][t] |
Out[10]= | -3 7 20 2 3 29 - t + -- - -- - 20 t + 7 t - t 2 t t |
In[11]:= | Conway[Knot[10, 60]][z] |
Out[11]= | 2 4 6 1 - z + z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 60], Knot[11, NonAlternating, 165]} |
In[13]:= | {KnotDet[Knot[10, 60]], KnotSignature[Knot[10, 60]]} |
Out[13]= | {85, 0} |
In[14]:= | Jones[Knot[10, 60]][q] |
Out[14]= | -6 3 6 10 13 14 2 3 4 14 + q - -- + -- - -- + -- - -- - 11 q + 8 q - 4 q + q 5 4 3 2 q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 60], Knot[10, 86]} |
In[16]:= | A2Invariant[Knot[10, 60]][q] |
Out[16]= | -20 -18 2 3 3 -4 2 2 4 6 8 -2 + q + q - --- - --- + -- + q + -- + 3 q - 3 q + q + 2 q - 16 10 8 2 q q q q 10 12 > 2 q + q |
In[17]:= | HOMFLYPT[Knot[10, 60]][a, z] |
Out[17]= | 2 4 -2 2 4 6 2 z 2 2 4 2 4 z -2 + a + 4 a - 3 a + a - 5 z + -- + 6 a z - 3 a z - 3 z + -- + 2 2 a a 2 4 6 > 3 a z - z |
In[18]:= | Kauffman[Knot[10, 60]][a, z] |
Out[18]= | 2 -2 2 4 6 2 z 3 5 2 4 z -2 - a - 4 a - 3 a - a - --- - 6 a z - 7 a z - 3 a z + 14 z + ---- + a 2 a 3 3 2 2 4 2 6 2 2 z 5 z 3 3 3 > 18 a z + 11 a z + 3 a z - ---- + ---- + 25 a z + 27 a z + 3 a a 4 4 5 5 5 3 4 z 9 z 2 4 4 4 6 4 4 z 11 z > 9 a z - 22 z + -- - ---- - 17 a z - 8 a z - 3 a z + ---- - ----- - 4 2 3 a a a a 6 5 3 5 5 5 6 8 z 2 6 4 6 6 6 > 38 a z - 32 a z - 9 a z + 5 z + ---- - 7 a z - 3 a z + a z + 2 a 7 9 z 7 3 7 5 7 8 2 8 4 8 9 > ---- + 16 a z + 10 a z + 3 a z + 5 z + 8 a z + 3 a z + a z + a 3 9 > a z |
In[19]:= | {Vassiliev[2][Knot[10, 60]], Vassiliev[3][Knot[10, 60]]} |
Out[19]= | {-1, 1} |
In[20]:= | Kh[Knot[10, 60]][q, t] |
Out[20]= | 7 1 2 1 4 2 6 4 7 - + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 5 2 q t q t q t q t q t q t q t q t 6 7 7 3 3 2 5 2 5 3 7 3 > ----- + ---- + --- + 5 q t + 6 q t + 3 q t + 5 q t + q t + 3 q t + 3 2 3 q t q t q t 9 4 > q t |
In[21]:= | ColouredJones[Knot[10, 60], 2][q] |
Out[21]= | -18 3 11 15 8 43 34 39 97 42 93 147 143 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + --- - 17 15 14 13 12 11 10 9 8 7 6 q q q q q q q q q q q 28 144 165 -2 162 2 3 4 5 > -- - --- + --- - q - --- + 22 q - 136 q + 91 q + 28 q - 80 q + 5 4 3 q q q q 6 7 8 9 10 11 12 > 39 q + 17 q - 28 q + 9 q + 4 q - 4 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 1060 |
|