© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 103Visit 103's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 103's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1627 X11,16,12,17 X5,13,6,12 X3,15,4,14 X13,5,14,4 X15,3,16,2 X7,20,8,1 X9,18,10,19 X17,10,18,11 X19,8,20,9 |
Gauss Code: | {-1, 6, -4, 5, -3, 1, -7, 10, -8, 9, -2, 3, -5, 4, -6, 2, -9, 8, -10, 7} |
DT (Dowker-Thistlethwaite) Code: | 6 14 12 20 18 16 4 2 10 8 |
Minimum Braid Representative:
Length is 13, width is 6 Braid index is 6 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | - 6t-1 + 13 - 6t |
Conway Polynomial: | 1 - 6z2 |
Other knots with the same Alexander/Conway Polynomial: | {...} |
Determinant and Signature: | {25, 0} |
Jones Polynomial: | q-6 - q-5 + 2q-4 - 3q-3 + 3q-2 - 4q-1 + 4 - 3q + 2q2 - q3 + q4 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | q-20 + q-18 + q-14 - q-10 - q-6 - q-4 + q2 - q4 + q8 + q12 + q14 |
HOMFLY-PT Polynomial: | a-4 - a-2z2 - 2z2 - a2 - 2a2z2 - a4z2 + a6 |
Kauffman Polynomial: | a-4 - 3a-4z2 + a-4z4 - 2a-3z3 + a-3z5 + a-2z2 - 2a-2z4 + a-2z6 + 4a-1z3 - 3a-1z5 + a-1z7 + 6z4 - 4z6 + z8 + 6az - 15az3 + 15az5 - 6az7 + az9 + a2 - 12a2z2 + 18a2z4 - 10a2z6 + 2a2z8 + 6a3z - 18a3z3 + 15a3z5 - 6a3z7 + a3z9 - 2a4z2 + 4a4z4 - 4a4z6 + a4z8 + 3a5z3 - 4a5z5 + a5z7 - a6 + 6a6z2 - 5a6z4 + a6z6 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-6, 3} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 103. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-18 - q-17 + 2q-15 - 3q-14 - q-13 + 5q-12 - 4q-11 - 3q-10 + 8q-9 - 4q-8 - 5q-7 + 9q-6 - 2q-5 - 7q-4 + 9q-3 - q-2 - 8q-1 + 9 - q - 6q2 + 6q3 - q4 - 3q5 + 3q6 - q7 - 2q8 + 2q9 - q11 + q12 |
3 | q-36 - q-35 + q-32 - 2q-31 + q-29 + 2q-28 - 4q-27 - q-26 + 3q-25 + 5q-24 - 5q-23 - 5q-22 + 3q-21 + 8q-20 - 3q-19 - 8q-18 + 2q-17 + 8q-16 - q-15 - 7q-14 + q-13 + 4q-12 + q-11 - 4q-10 + q-9 + q-7 - q-6 - q-4 + q-3 + q-2 - q-1 - q + q2 + 2q3 - 3q5 - q6 + 4q7 + 3q8 - 5q9 - 2q10 + 2q11 + 5q12 - 3q13 - 2q14 - q15 + 4q16 - q17 - q18 - 2q19 + 2q20 - q23 + q24 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 3]] |
Out[2]= | PD[X[1, 6, 2, 7], X[11, 16, 12, 17], X[5, 13, 6, 12], X[3, 15, 4, 14], > X[13, 5, 14, 4], X[15, 3, 16, 2], X[7, 20, 8, 1], X[9, 18, 10, 19], > X[17, 10, 18, 11], X[19, 8, 20, 9]] |
In[3]:= | GaussCode[Knot[10, 3]] |
Out[3]= | GaussCode[-1, 6, -4, 5, -3, 1, -7, 10, -8, 9, -2, 3, -5, 4, -6, 2, -9, 8, -10, > 7] |
In[4]:= | DTCode[Knot[10, 3]] |
Out[4]= | DTCode[6, 14, 12, 20, 18, 16, 4, 2, 10, 8] |
In[5]:= | br = BR[Knot[10, 3]] |
Out[5]= | BR[6, {-1, -1, -2, 1, -2, -3, 2, 4, -3, 4, 5, -4, 5}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {6, 13} |
In[7]:= | BraidIndex[Knot[10, 3]] |
Out[7]= | 6 |
In[8]:= | Show[DrawMorseLink[Knot[10, 3]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 3]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 1, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 3]][t] |
Out[10]= | 6 13 - - - 6 t t |
In[11]:= | Conway[Knot[10, 3]][z] |
Out[11]= | 2 1 - 6 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 3]} |
In[13]:= | {KnotDet[Knot[10, 3]], KnotSignature[Knot[10, 3]]} |
Out[13]= | {25, 0} |
In[14]:= | Jones[Knot[10, 3]][q] |
Out[14]= | -6 -5 2 3 3 4 2 3 4 4 + q - q + -- - -- + -- - - - 3 q + 2 q - q + q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 3]} |
In[16]:= | A2Invariant[Knot[10, 3]][q] |
Out[16]= | -20 -18 -14 -10 -6 -4 2 4 8 12 14 q + q + q - q - q - q + q - q + q + q + q |
In[17]:= | HOMFLYPT[Knot[10, 3]][a, z] |
Out[17]= | 2 -4 2 6 2 z 2 2 4 2 a - a + a - 2 z - -- - 2 a z - a z 2 a |
In[18]:= | Kauffman[Knot[10, 3]][a, z] |
Out[18]= | 2 2 -4 2 6 3 3 z z 2 2 4 2 6 2 a + a - a + 6 a z + 6 a z - ---- + -- - 12 a z - 2 a z + 6 a z - 4 2 a a 3 3 4 4 2 z 4 z 3 3 3 5 3 4 z 2 z 2 4 > ---- + ---- - 15 a z - 18 a z + 3 a z + 6 z + -- - ---- + 18 a z + 3 a 4 2 a a a 5 5 6 4 4 6 4 z 3 z 5 3 5 5 5 6 z > 4 a z - 5 a z + -- - ---- + 15 a z + 15 a z - 4 a z - 4 z + -- - 3 a 2 a a 7 2 6 4 6 6 6 z 7 3 7 5 7 8 2 8 > 10 a z - 4 a z + a z + -- - 6 a z - 6 a z + a z + z + 2 a z + a 4 8 9 3 9 > a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 3]], Vassiliev[3][Knot[10, 3]]} |
Out[19]= | {-6, 3} |
In[20]:= | Kh[Knot[10, 3]][q, t] |
Out[20]= | 2 1 1 2 1 2 2 1 2 2 - + 3 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 13 6 9 5 9 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 5 2 5 3 9 4 > 2 q t + q t + 2 q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 3], 2][q] |
Out[21]= | -18 -17 2 3 -13 5 4 3 8 4 5 9 2 9 + q - q + --- - --- - q + --- - --- - --- + -- - -- - -- + -- - -- - 15 14 12 11 10 9 8 7 6 5 q q q q q q q q q q 7 9 -2 8 2 3 4 5 6 7 8 9 > -- + -- - q - - - q - 6 q + 6 q - q - 3 q + 3 q - q - 2 q + 2 q - 4 3 q q q 11 12 > q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 103 |
|