© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table:
10.1
101
10.3
103
    10.2
KnotPlot
This page is passe. Go here instead!

   The Alternating Knot 102   

Visit 102's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 102's page at Knotilus!

Acknowledgement

10.2
KnotPlot

PD Presentation: X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X7,16,8,17 X9,18,10,19 X11,20,12,1 X15,6,16,7 X17,8,18,9 X19,10,20,11

Gauss Code: {-1, 4, -3, 1, -2, 8, -5, 9, -6, 10, -7, 3, -4, 2, -8, 5, -9, 6, -10, 7}

DT (Dowker-Thistlethwaite) Code: 4 12 14 16 18 20 2 6 8 10

Minimum Braid Representative:


Length is 10, width is 3
Braid index is 3

A Morse Link Presentation:

3D Invariants:
Symmetry Type Unknotting Number 3-Genus Bridge/Super Bridge Index Nakanishi Index
Reversible 3 4 2 / NotAvailable 1

Alexander Polynomial: - t-4 + 3t-3 - 3t-2 + 3t-1 - 3 + 3t - 3t2 + 3t3 - t4

Conway Polynomial: 1 + 2z2 - 5z4 - 5z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {23, -6}

Jones Polynomial: q-11 - 2q-10 + 2q-9 - 3q-8 + 3q-7 - 3q-6 + 3q-5 - 2q-4 + 2q-3 - q-2 + q-1

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-32 - q-26 - q-24 - q-22 - q-20 + q-18 + q-14 + q-10 + q-8 + q-6 + q-4

HOMFLY-PT Polynomial: 4a4 + 10a4z2 + 6a4z4 + a4z6 - 4a6 - 14a6z2 - 16a6z4 - 7a6z6 - a6z8 + a8 + 6a8z2 + 5a8z4 + a8z6

Kauffman Polynomial: 4a4 - 14a4z2 + 16a4z4 - 7a4z6 + a4z8 - 2a5z - 3a5z3 + 10a5z5 - 6a5z7 + a5z9 + 4a6 - 21a6z2 + 33a6z4 - 18a6z6 + 3a6z8 - a7z + 3a7z3 + 2a7z5 - 4a7z7 + a7z9 + a8 - 5a8z2 + 11a8z4 - 9a8z6 + 2a8z8 + a9z + 2a9z3 - 6a9z5 + 2a9z7 - 4a10z4 + 2a10z6 - a11z - 2a11z3 + 2a11z5 - a12z2 + 2a12z4 - a13z + 2a13z3 + a14z2

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-6 is the signature of 102. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = -1          1
j = -3           
j = -5        21 
j = -7       11  
j = -9      21   
j = -11     11    
j = -13    22     
j = -15   11      
j = -17  12       
j = -19 11        
j = -21 1         
j = -231          

 n  Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2))
2 q-30 - 2q-29 + 3q-27 - 4q-26 + q-25 + 4q-24 - 4q-23 + 4q-21 - 4q-20 + 4q-18 - 5q-17 + q-16 + 4q-15 - 6q-14 + q-13 + 5q-12 - 6q-11 + q-10 + 5q-9 - 5q-8 + 5q-6 - 3q-5 - q-4 + 3q-3 - q-2 - q-1 + 1
3 q-57 - 2q-56 + q-54 + 2q-53 - 3q-52 - q-51 + 4q-50 + q-49 - 5q-48 - 3q-47 + 9q-46 + q-45 - 8q-44 - 5q-43 + 12q-42 + 4q-41 - 11q-40 - 8q-39 + 14q-38 + 7q-37 - 12q-36 - 8q-35 + 12q-34 + 8q-33 - 11q-32 - 6q-31 + 9q-30 + 6q-29 - 10q-28 - 4q-27 + 7q-26 + 5q-25 - 8q-24 - 3q-23 + 5q-22 + 5q-21 - 7q-20 - 2q-19 + 4q-18 + 4q-17 - 7q-16 - q-15 + 4q-14 + 4q-13 - 6q-12 - 2q-11 + 4q-10 + 5q-9 - 5q-8 - 3q-7 + 2q-6 + 5q-5 - 2q-4 - 3q-3 + 3q-1 - q - q2 + q3
4 q-92 - 2q-91 + q-89 + 3q-87 - 5q-86 + 2q-85 - q-83 + 4q-82 - 7q-81 + 6q-80 - 3q-78 + q-77 - 7q-76 + 12q-75 + q-74 - 7q-73 - 3q-72 - 7q-71 + 20q-70 + q-69 - 11q-68 - 6q-67 - 7q-66 + 26q-65 + q-64 - 13q-63 - 10q-62 - 8q-61 + 30q-60 + 3q-59 - 13q-58 - 12q-57 - 10q-56 + 29q-55 + 5q-54 - 9q-53 - 12q-52 - 12q-51 + 26q-50 + 5q-49 - 7q-48 - 9q-47 - 13q-46 + 23q-45 + 5q-44 - 6q-43 - 6q-42 - 15q-41 + 19q-40 + 6q-39 - 4q-38 - 2q-37 - 17q-36 + 13q-35 + 6q-34 - q-33 + 3q-32 - 18q-31 + 7q-30 + 5q-29 + q-28 + 7q-27 - 17q-26 + 3q-25 + 4q-24 + q-23 + 9q-22 - 15q-21 + 2q-20 + 3q-19 + 9q-17 - 13q-16 + q-15 + 3q-14 + q-13 + 9q-12 - 12q-11 - q-10 + 2q-9 + 2q-8 + 9q-7 - 8q-6 - 3q-5 - q-4 + q-3 + 8q-2 - 3q-1 - 2 - 2q - q2 + 4q3 - q6 - q7 + q8
5 q-135 - 2q-134 + q-132 + q-130 + q-129 - 2q-128 - 2q-127 + q-126 - q-125 + 3q-124 + 2q-123 - 3q-121 - 3q-120 - 3q-119 + 4q-118 + 7q-117 + 3q-116 - 4q-115 - 9q-114 - 6q-113 + 4q-112 + 12q-111 + 9q-110 - 5q-109 - 16q-108 - 6q-107 + 4q-106 + 13q-105 + 11q-104 - 6q-103 - 18q-102 - 3q-101 + 7q-100 + 12q-99 + 7q-98 - 10q-97 - 18q-96 + q-95 + 14q-94 + 14q-93 + 2q-92 - 18q-91 - 20q-90 + 3q-89 + 20q-88 + 19q-87 + 2q-86 - 22q-85 - 23q-84 - 2q-83 + 20q-82 + 22q-81 + 6q-80 - 17q-79 - 22q-78 - 9q-77 + 15q-76 + 21q-75 + 9q-74 - 11q-73 - 19q-72 - 13q-71 + 10q-70 + 21q-69 + 12q-68 - 9q-67 - 19q-66 - 17q-65 + 8q-64 + 24q-63 + 15q-62 - 6q-61 - 20q-60 - 20q-59 + 4q-58 + 23q-57 + 18q-56 - 2q-55 - 18q-54 - 21q-53 - q-52 + 19q-51 + 16q-50 + 4q-49 - 12q-48 - 19q-47 - 5q-46 + 12q-45 + 10q-44 + 8q-43 - 3q-42 - 13q-41 - 7q-40 + 4q-39 + 2q-38 + 7q-37 + 4q-36 - 3q-35 - 5q-34 - q-33 - 5q-32 + 2q-31 + 6q-30 + 3q-29 - q-27 - 9q-26 - q-25 + 4q-24 + 4q-23 + 3q-22 + q-21 - 8q-20 - 3q-19 + 3q-18 + 4q-17 + 3q-16 + 2q-15 - 8q-14 - 4q-13 + 2q-12 + 5q-11 + 5q-10 + 2q-9 - 7q-8 - 6q-7 - q-6 + 3q-5 + 7q-4 + 5q-3 - 4q-2 - 5q-1 - 4 - q + 4q2 + 6q3 - 2q5 - 2q6 - 3q7 + 3q9 + q10 - q13 - q14 + q15
6 q-186 - 2q-185 + q-183 + q-181 - q-180 + 4q-179 - 6q-178 - q-177 + q-176 + q-175 + 3q-174 - q-173 + 9q-172 - 12q-171 - 3q-170 - 2q-169 + 2q-168 + 7q-167 + 2q-166 + 15q-165 - 17q-164 - 10q-163 - 9q-162 + 4q-161 + 14q-160 + 7q-159 + 24q-158 - 20q-157 - 20q-156 - 20q-155 + q-154 + 22q-153 + 12q-152 + 37q-151 - 15q-150 - 27q-149 - 33q-148 - 10q-147 + 20q-146 + 15q-145 + 54q-144 - q-143 - 25q-142 - 42q-141 - 28q-140 + 7q-139 + 11q-138 + 69q-137 + 19q-136 - 13q-135 - 44q-134 - 44q-133 - 11q-132 - 3q-131 + 76q-130 + 36q-129 + 6q-128 - 35q-127 - 50q-126 - 26q-125 - 23q-124 + 71q-123 + 42q-122 + 19q-121 - 22q-120 - 43q-119 - 28q-118 - 36q-117 + 61q-116 + 36q-115 + 18q-114 - 18q-113 - 32q-112 - 18q-111 - 32q-110 + 58q-109 + 26q-108 + 8q-107 - 25q-106 - 28q-105 - 8q-104 - 22q-103 + 60q-102 + 19q-101 + 2q-100 - 30q-99 - 26q-98 - 3q-97 - 16q-96 + 58q-95 + 10q-94 - 2q-93 - 28q-92 - 18q-91 + 4q-90 - 10q-89 + 50q-88 - 4q-87 - 8q-86 - 25q-85 - 7q-84 + 14q-83 - 3q-82 + 43q-81 - 20q-80 - 15q-79 - 24q-78 + 2q-77 + 24q-76 + 4q-75 + 39q-74 - 32q-73 - 22q-72 - 24q-71 + 5q-70 + 30q-69 + 13q-68 + 41q-67 - 37q-66 - 28q-65 - 28q-64 + q-63 + 29q-62 + 20q-61 + 47q-60 - 32q-59 - 27q-58 - 31q-57 - 9q-56 + 18q-55 + 20q-54 + 51q-53 - 20q-52 - 16q-51 - 26q-50 - 17q-49 + 3q-48 + 10q-47 + 46q-46 - 11q-45 - q-44 - 12q-43 - 16q-42 - 7q-41 - 3q-40 + 32q-39 - 12q-38 + 8q-37 + 3q-36 - 7q-35 - 6q-34 - 9q-33 + 19q-32 - 19q-31 + 7q-30 + 9q-29 - 7q-26 + 14q-25 - 22q-24 + 2q-23 + 8q-22 + 2q-21 + 3q-20 - 4q-19 + 13q-18 - 21q-17 + 6q-15 + 3q-14 + 4q-13 - 2q-12 + 11q-11 - 20q-10 - 3q-9 + 3q-8 + 4q-7 + 6q-6 + 2q-5 + 11q-4 - 16q-3 - 6q-2 - 3q-1 + 1 + 4q + 5q2 + 13q3 - 8q4 - 4q5 - 5q6 - 3q7 - q8 + 2q9 + 10q10 - q11 - 2q13 - 2q14 - 3q15 - q16 + 4q17 + q19 - q22 - q23 + q24
7 q-245 - 2q-244 + q-242 + q-240 - q-239 + 2q-238 - 5q-236 - q-235 + 3q-234 + q-233 + 3q-232 - q-231 + 3q-230 - 11q-228 - 4q-227 + 4q-226 + 5q-225 + 7q-224 + 3q-223 + 2q-222 - 3q-221 - 19q-220 - 9q-219 + 4q-218 + 11q-217 + 20q-216 + 10q-215 - q-214 - 14q-213 - 31q-212 - 17q-211 + 2q-210 + 24q-209 + 41q-208 + 26q-207 - 5q-206 - 34q-205 - 52q-204 - 34q-203 + 42q-201 + 74q-200 + 48q-199 - 4q-198 - 56q-197 - 85q-196 - 60q-195 - 4q-194 + 63q-193 + 110q-192 + 77q-191 - 76q-189 - 121q-188 - 87q-187 - 10q-186 + 81q-185 + 148q-184 + 105q-183 + 4q-182 - 95q-181 - 154q-180 - 115q-179 - 18q-178 + 96q-177 + 184q-176 + 134q-175 + 12q-174 - 107q-173 - 187q-172 - 145q-171 - 33q-170 + 104q-169 + 211q-168 + 166q-167 + 34q-166 - 106q-165 - 210q-164 - 176q-163 - 56q-162 + 94q-161 + 221q-160 + 190q-159 + 61q-158 - 88q-157 - 212q-156 - 189q-155 - 74q-154 + 77q-153 + 205q-152 + 189q-151 + 72q-150 - 70q-149 - 194q-148 - 177q-147 - 71q-146 + 66q-145 + 183q-144 + 171q-143 + 64q-142 - 67q-141 - 177q-140 - 160q-139 - 59q-138 + 67q-137 + 171q-136 + 158q-135 + 56q-134 - 67q-133 - 168q-132 - 155q-131 - 55q-130 + 63q-129 + 160q-128 + 153q-127 + 61q-126 - 56q-125 - 157q-124 - 152q-123 - 58q-122 + 50q-121 + 142q-120 + 143q-119 + 68q-118 - 40q-117 - 138q-116 - 141q-115 - 59q-114 + 35q-113 + 119q-112 + 126q-111 + 69q-110 - 24q-109 - 114q-108 - 122q-107 - 58q-106 + 21q-105 + 93q-104 + 103q-103 + 64q-102 - 8q-101 - 86q-100 - 97q-99 - 50q-98 + 8q-97 + 66q-96 + 74q-95 + 52q-94 + q-93 - 61q-92 - 66q-91 - 34q-90 + 4q-89 + 44q-88 + 47q-87 + 33q-86 - 2q-85 - 47q-84 - 41q-83 - 14q-82 + 10q-81 + 38q-80 + 30q-79 + 17q-78 - 13q-77 - 50q-76 - 31q-75 - 3q-74 + 21q-73 + 44q-72 + 30q-71 + 13q-70 - 19q-69 - 59q-68 - 38q-67 - 8q-66 + 21q-65 + 50q-64 + 38q-63 + 26q-62 - 8q-61 - 58q-60 - 46q-59 - 25q-58 + 4q-57 + 40q-56 + 38q-55 + 39q-54 + 15q-53 - 39q-52 - 36q-51 - 33q-50 - 17q-49 + 17q-48 + 20q-47 + 36q-46 + 29q-45 - 16q-44 - 12q-43 - 20q-42 - 23q-41 - 2q-39 + 17q-38 + 24q-37 - 9q-36 + 7q-35 - q-34 - 13q-33 + q-32 - 11q-31 + 2q-30 + 12q-29 - 13q-28 + 7q-27 + 7q-26 - 3q-25 + 9q-24 - 8q-23 - 3q-22 + 8q-21 - 17q-20 + 2q-19 + 6q-18 - q-17 + 13q-16 - 4q-15 - 3q-14 + 5q-13 - 16q-12 - q-11 + 4q-10 - q-9 + 15q-8 + 2q-7 - 2q-6 + 3q-5 - 17q-4 - 5q-3 - 3q-1 + 13 + 8q + 5q2 + 6q3 - 13q4 - 8q5 - 4q6 - 9q7 + 5q8 + 6q9 + 8q10 + 11q11 - 4q12 - 4q13 - 3q14 - 8q15 - 3q16 - q17 + 3q18 + 9q19 + q20 + q22 - 3q23 - 2q24 - 3q25 - q26 + 3q27 + q28 + q30 - q33 - q34 + q35


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
PD[Knot[10, 2]]
Out[2]=   
PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], 
 
>   X[7, 16, 8, 17], X[9, 18, 10, 19], X[11, 20, 12, 1], X[15, 6, 16, 7], 
 
>   X[17, 8, 18, 9], X[19, 10, 20, 11]]
In[3]:=
GaussCode[Knot[10, 2]]
Out[3]=   
GaussCode[-1, 4, -3, 1, -2, 8, -5, 9, -6, 10, -7, 3, -4, 2, -8, 5, -9, 6, -10, 
 
>   7]
In[4]:=
DTCode[Knot[10, 2]]
Out[4]=   
DTCode[4, 12, 14, 16, 18, 20, 2, 6, 8, 10]
In[5]:=
br = BR[Knot[10, 2]]
Out[5]=   
BR[3, {-1, -1, -1, -1, -1, -1, -1, 2, -1, 2}]
In[6]:=
{First[br], Crossings[br]}
Out[6]=   
{3, 10}
In[7]:=
BraidIndex[Knot[10, 2]]
Out[7]=   
3
In[8]:=
Show[DrawMorseLink[Knot[10, 2]]]
Out[8]=   
 -Graphics- 
In[9]:=
#[Knot[10, 2]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}
Out[9]=   
{Reversible, 3, 4, 2, NotAvailable, 1}
In[10]:=
alex = Alexander[Knot[10, 2]][t]
Out[10]=   
      -4   3    3    3            2      3    4
-3 - t   + -- - -- + - + 3 t - 3 t  + 3 t  - t
            3    2   t
           t    t
In[11]:=
Conway[Knot[10, 2]][z]
Out[11]=   
       2      4      6    8
1 + 2 z  - 5 z  - 5 z  - z
In[12]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[12]=   
{Knot[10, 2]}
In[13]:=
{KnotDet[Knot[10, 2]], KnotSignature[Knot[10, 2]]}
Out[13]=   
{23, -6}
In[14]:=
Jones[Knot[10, 2]][q]
Out[14]=   
 -11    2    2    3    3    3    3    2    2     -2   1
q    - --- + -- - -- + -- - -- + -- - -- + -- - q   + -
        10    9    8    7    6    5    4    3         q
       q     q    q    q    q    q    q    q
In[15]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[15]=   
{Knot[10, 2]}
In[16]:=
A2Invariant[Knot[10, 2]][q]
Out[16]=   
 -32    -26    -24    -22    -20    -18    -14    -10    -8    -6    -4
q    - q    - q    - q    - q    + q    + q    + q    + q   + q   + q
In[17]:=
HOMFLYPT[Knot[10, 2]][a, z]
Out[17]=   
   4      6    8       4  2       6  2      8  2      4  4       6  4
4 a  - 4 a  + a  + 10 a  z  - 14 a  z  + 6 a  z  + 6 a  z  - 16 a  z  + 
 
       8  4    4  6      6  6    8  6    6  8
>   5 a  z  + a  z  - 7 a  z  + a  z  - a  z
In[18]:=
Kauffman[Knot[10, 2]][a, z]
Out[18]=   
   4      6    8      5      7      9      11      13         4  2       6  2
4 a  + 4 a  + a  - 2 a  z - a  z + a  z - a   z - a   z - 14 a  z  - 21 a  z  - 
 
       8  2    12  2    14  2      5  3      7  3      9  3      11  3
>   5 a  z  - a   z  + a   z  - 3 a  z  + 3 a  z  + 2 a  z  - 2 a   z  + 
 
       13  3       4  4       6  4       8  4      10  4      12  4
>   2 a   z  + 16 a  z  + 33 a  z  + 11 a  z  - 4 a   z  + 2 a   z  + 
 
        5  5      7  5      9  5      11  5      4  6       6  6      8  6
>   10 a  z  + 2 a  z  - 6 a  z  + 2 a   z  - 7 a  z  - 18 a  z  - 9 a  z  + 
 
       10  6      5  7      7  7      9  7    4  8      6  8      8  8
>   2 a   z  - 6 a  z  - 4 a  z  + 2 a  z  + a  z  + 3 a  z  + 2 a  z  + 
 
     5  9    7  9
>   a  z  + a  z
In[19]:=
{Vassiliev[2][Knot[10, 2]], Vassiliev[3][Knot[10, 2]]}
Out[19]=   
{2, -2}
In[20]:=
Kh[Knot[10, 2]][q, t]
Out[20]=   
 -7   2      1        1        1        1        1        2        1
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       5    23  8    21  7    19  7    19  6    17  6    17  5    15  5
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
                                                                             2
      1        2        2        1        1        2      1      1     t    t
>   ------ + ------ + ------ + ------ + ------ + ----- + ---- + ---- + -- + --
     15  4    13  4    13  3    11  3    11  2    9  2    9      7      5   q
    q   t    q   t    q   t    q   t    q   t    q  t    q  t   q  t   q
In[21]:=
ColouredJones[Knot[10, 2], 2][q]
Out[21]=   
     -30    2     3     4     -25    4     4     4     4     4     5     -16
1 + q    - --- + --- - --- + q    + --- - --- + --- - --- + --- - --- + q    + 
            29    27    26           24    23    21    20    18    17
           q     q     q            q     q     q     q     q     q
 
     4     6     -13    5     6     -10   5    5    5    3     -4   3     -2   1
>   --- - --- + q    + --- - --- + q    + -- - -- + -- - -- - q   + -- - q   - -
     15    14           12    11           9    8    6    5          3         q
    q     q            q     q            q    q    q    q          q


Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 102
10.1
101
10.3
103