© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Non Alternating Knot 10129Visit 10129's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10129's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X1425 X3849 X5,14,6,15 X20,16,1,15 X16,10,17,9 X10,20,11,19 X18,12,19,11 X12,18,13,17 X13,6,14,7 X7283 |
Gauss Code: | {-1, 10, -2, 1, -3, 9, -10, 2, 5, -6, 7, -8, -9, 3, 4, -5, 8, -7, 6, -4} |
DT (Dowker-Thistlethwaite) Code: | 4 8 14 2 -16 -18 6 -20 -12 -10 |
Minimum Braid Representative:
Length is 11, width is 4 Braid index is 4 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | 2t-2 - 6t-1 + 9 - 6t + 2t2 |
Conway Polynomial: | 1 + 2z2 + 2z4 |
Other knots with the same Alexander/Conway Polynomial: | {88, K11n39, K11n45, K11n50, K11n132, ...} |
Determinant and Signature: | {25, 0} |
Jones Polynomial: | - q-5 + 2q-4 - 3q-3 + 4q-2 - 4q-1 + 5 - 3q + 2q2 - q3 |
Other knots (up to mirrors) with the same Jones Polynomial: | {88, ...} |
A2 (sl(3)) Invariant: | - q-16 - q-10 + q-8 + q-4 + 2q-2 + 1 + 2q2 - q4 - q10 |
HOMFLY-PT Polynomial: | - a-2 - a-2z2 + 2 + 2z2 + z4 + a2 + 2a2z2 + a2z4 - a4 - a4z2 |
Kauffman Polynomial: | - 2a-3z + a-3z3 + a-2 - 3a-2z2 + 2a-2z4 - 5a-1z + 9a-1z3 - 4a-1z5 + a-1z7 + 2 - 4z2 + 8z4 - 4z6 + z8 - 5az + 15az3 - 11az5 + 3az7 - a2 + 2a2z2 - 2a2z6 + a2z8 - a3z + 4a3z3 - 6a3z5 + 2a3z7 - a4 + 3a4z2 - 6a4z4 + 2a4z6 + a5z - 3a5z3 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {2, -1} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10129. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 2q-14 + 5q-12 - 6q-11 - 3q-10 + 11q-9 - 6q-8 - 9q-7 + 15q-6 - 2q-5 - 15q-4 + 16q-3 + 2q-2 - 17q-1 + 14 + 4q - 13q2 + 6q3 + 4q4 - 6q5 + q6 + 2q7 - q8 |
3 | - q-30 + 2q-29 - 2q-27 - 2q-26 + 5q-25 + 4q-24 - 7q-23 - 8q-22 + 8q-21 + 12q-20 - 4q-19 - 18q-18 - q-17 + 19q-16 + 9q-15 - 17q-14 - 20q-13 + 14q-12 + 27q-11 - 6q-10 - 36q-9 + 2q-8 + 39q-7 + 8q-6 - 46q-5 - 9q-4 + 43q-3 + 18q-2 - 47q-1 - 15 + 37q + 25q2 - 35q3 - 23q4 + 23q5 + 24q6 - 14q7 - 21q8 + 5q9 + 16q10 + q11 - 10q12 - 3q13 + 4q14 + 4q15 - 2q16 - q17 - q18 + q19 |
4 | q-50 - 2q-49 + 2q-47 - q-46 + 3q-45 - 7q-44 + 7q-42 - q-41 + 9q-40 - 18q-39 - 7q-38 + 12q-37 + 2q-36 + 27q-35 - 22q-34 - 19q-33 - 11q-31 + 51q-30 - q-29 - 10q-28 - 17q-27 - 56q-26 + 44q-25 + 28q-24 + 40q-23 - 3q-22 - 111q-21 - 6q-20 + 31q-19 + 102q-18 + 46q-17 - 140q-16 - 70q-15 + 5q-14 + 147q-13 + 101q-12 - 145q-11 - 117q-10 - 23q-9 + 168q-8 + 138q-7 - 139q-6 - 143q-5 - 42q-4 + 170q-3 + 156q-2 - 121q-1 - 150 - 59q + 148q2 + 162q3 - 77q4 - 139q5 - 79q6 + 97q7 + 146q8 - 17q9 - 93q10 - 86q11 + 27q12 + 99q13 + 27q14 - 31q15 - 62q16 - 18q17 + 40q18 + 28q19 + 7q20 - 22q21 - 21q22 + 5q23 + 9q24 + 9q25 - q26 - 7q27 - q28 + 2q30 + q31 - q32 |
5 | - q-75 + 2q-74 - 2q-72 + q-71 - q-69 + 3q-68 + q-67 - 6q-66 - 2q-65 + 3q-64 + 3q-63 + 7q-62 + 3q-61 - 9q-60 - 16q-59 - 4q-58 + 8q-57 + 16q-56 + 20q-55 - 20q-53 - 27q-52 - 16q-51 + 5q-50 + 30q-49 + 35q-48 + 22q-47 - 10q-46 - 48q-45 - 56q-44 - 29q-43 + 27q-42 + 90q-41 + 92q-40 + 20q-39 - 97q-38 - 158q-37 - 101q-36 + 63q-35 + 214q-34 + 206q-33 + 3q-32 - 242q-31 - 306q-30 - 107q-29 + 229q-28 + 407q-27 + 221q-26 - 195q-25 - 471q-24 - 338q-23 + 131q-22 + 524q-21 + 440q-20 - 76q-19 - 539q-18 - 523q-17 + 8q-16 + 563q-15 + 579q-14 + 29q-13 - 550q-12 - 623q-11 - 77q-10 + 563q-9 + 647q-8 + 89q-7 - 537q-6 - 662q-5 - 136q-4 + 542q-3 + 671q-2 + 141q-1 - 489 - 669q - 201q2 + 461q3 + 658q4 + 226q5 - 376q6 - 617q7 - 287q8 + 290q9 + 557q10 + 317q11 - 174q12 - 465q13 - 334q14 + 60q15 + 352q16 + 317q17 + 38q18 - 229q19 - 273q20 - 97q21 + 114q22 + 202q23 + 121q24 - 28q25 - 125q26 - 112q27 - 20q28 + 61q29 + 76q30 + 39q31 - 13q32 - 48q33 - 33q34 - q35 + 15q36 + 20q37 + 11q38 - 6q39 - 10q40 - 3q41 - q42 + 2q43 + 3q44 - q46 |
6 | q-105 - 2q-104 + 2q-102 - q-101 - 2q-99 + 5q-98 - 4q-97 - 2q-96 + 8q-95 - 2q-94 - 2q-93 - 9q-92 + 8q-91 - 7q-90 - 2q-89 + 21q-88 + 4q-87 + q-86 - 24q-85 + 7q-84 - 24q-83 - 15q-82 + 34q-81 + 20q-80 + 29q-79 - 22q-78 + 21q-77 - 43q-76 - 57q-75 + 2q-73 + 48q-72 + 5q-71 + 101q-70 + 12q-69 - 49q-68 - 55q-67 - 96q-66 - 52q-65 - 77q-64 + 157q-63 + 162q-62 + 136q-61 + 67q-60 - 100q-59 - 231q-58 - 385q-57 - 69q-56 + 138q-55 + 365q-54 + 449q-53 + 275q-52 - 135q-51 - 682q-50 - 588q-49 - 337q-48 + 222q-47 + 762q-46 + 948q-45 + 470q-44 - 535q-43 - 1003q-42 - 1093q-41 - 447q-40 + 609q-39 + 1484q-38 + 1328q-37 + 112q-36 - 976q-35 - 1696q-34 - 1316q-33 + 31q-32 + 1615q-31 + 2018q-30 + 895q-29 - 607q-28 - 1941q-27 - 1998q-26 - 608q-25 + 1467q-24 + 2374q-23 + 1474q-22 - 213q-21 - 1941q-20 - 2367q-19 - 1047q-18 + 1283q-17 + 2495q-16 + 1776q-15 + 33q-14 - 1875q-13 - 2515q-12 - 1270q-11 + 1160q-10 + 2518q-9 + 1912q-8 + 166q-7 - 1804q-6 - 2568q-5 - 1404q-4 + 1033q-3 + 2484q-2 + 2011q-1 + 328 - 1653q - 2560q2 - 1567q3 + 753q4 + 2300q5 + 2093q6 + 627q7 - 1262q8 - 2370q9 - 1750q10 + 223q11 + 1790q12 + 1994q13 + 1016q14 - 567q15 - 1816q16 - 1742q17 - 417q18 + 943q19 + 1506q20 + 1199q21 + 201q22 - 937q23 - 1321q24 - 775q25 + 91q26 + 714q27 + 927q28 + 597q29 - 126q30 - 618q31 - 625q32 - 320q33 + 45q34 + 388q35 + 471q36 + 217q37 - 74q38 - 233q39 - 245q40 - 179q41 + 14q42 + 163q43 + 153q44 + 80q45 + 2q46 - 53q47 - 101q48 - 57q49 + 6q50 + 31q51 + 33q52 + 26q53 + 15q54 - 19q55 - 17q56 - 7q57 - 2q58 + 3q60 + 8q61 - q62 - q63 - q66 - q67 + q68 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 129]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[20, 16, 1, 15], > X[16, 10, 17, 9], X[10, 20, 11, 19], X[18, 12, 19, 11], X[12, 18, 13, 17], > X[13, 6, 14, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 129]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, 5, -6, 7, -8, -9, 3, 4, -5, 8, -7, 6, > -4] |
In[4]:= | DTCode[Knot[10, 129]] |
Out[4]= | DTCode[4, 8, 14, 2, -16, -18, 6, -20, -12, -10] |
In[5]:= | br = BR[Knot[10, 129]] |
Out[5]= | BR[4, {1, 1, 1, -2, -1, -1, 3, -2, -1, 3, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 129]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 129]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 129]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 129]][t] |
Out[10]= | 2 6 2 9 + -- - - - 6 t + 2 t 2 t t |
In[11]:= | Conway[Knot[10, 129]][z] |
Out[11]= | 2 4 1 + 2 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 8], Knot[10, 129], Knot[11, NonAlternating, 39], > Knot[11, NonAlternating, 45], Knot[11, NonAlternating, 50], > Knot[11, NonAlternating, 132]} |
In[13]:= | {KnotDet[Knot[10, 129]], KnotSignature[Knot[10, 129]]} |
Out[13]= | {25, 0} |
In[14]:= | Jones[Knot[10, 129]][q] |
Out[14]= | -5 2 3 4 4 2 3 5 - q + -- - -- + -- - - - 3 q + 2 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 8], Knot[10, 129]} |
In[16]:= | A2Invariant[Knot[10, 129]][q] |
Out[16]= | -16 -10 -8 -4 2 2 4 10 1 - q - q + q + q + -- + 2 q - q - q 2 q |
In[17]:= | HOMFLYPT[Knot[10, 129]][a, z] |
Out[17]= | 2 -2 2 4 2 z 2 2 4 2 4 2 4 2 - a + a - a + 2 z - -- + 2 a z - a z + z + a z 2 a |
In[18]:= | Kauffman[Knot[10, 129]][a, z] |
Out[18]= | 2 -2 2 4 2 z 5 z 3 5 2 3 z 2 2 2 + a - a - a - --- - --- - 5 a z - a z + a z - 4 z - ---- + 2 a z + 3 a 2 a a 3 3 4 4 2 z 9 z 3 3 3 5 3 4 2 z 4 4 > 3 a z + -- + ---- + 15 a z + 4 a z - 3 a z + 8 z + ---- - 6 a z - 3 a 2 a a 5 7 4 z 5 3 5 5 5 6 2 6 4 6 z 7 > ---- - 11 a z - 6 a z + a z - 4 z - 2 a z + 2 a z + -- + 3 a z + a a 3 7 8 2 8 > 2 a z + z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 129]], Vassiliev[3][Knot[10, 129]]} |
Out[19]= | {2, -1} |
In[20]:= | Kh[Knot[10, 129]][q, t] |
Out[20]= | 3 1 1 1 2 1 2 2 2 2 - + 3 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t q t 3 3 2 5 2 7 3 > q t + 2 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 129], 2][q] |
Out[21]= | -15 2 5 6 3 11 6 9 15 2 15 16 2 14 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- + -- - 14 12 11 10 9 8 7 6 5 4 3 2 q q q q q q q q q q q q 17 2 3 4 5 6 7 8 > -- + 4 q - 13 q + 6 q + 4 q - 6 q + q + 2 q - q q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10129 |
|