© | Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: |
|
![]() KnotPlot |
This page is passe. Go here
instead!
The Alternating Knot 10123Visit 10123's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10123's page at Knotilus! |
![]() KnotPlot |
PD Presentation: | X8291 X10,3,11,4 X12,6,13,5 X4,18,5,17 X18,11,19,12 X2,15,3,16 X16,10,17,9 X20,14,1,13 X14,7,15,8 X6,19,7,20 |
Gauss Code: | {1, -6, 2, -4, 3, -10, 9, -1, 7, -2, 5, -3, 8, -9, 6, -7, 4, -5, 10, -8} |
DT (Dowker-Thistlethwaite) Code: | 8 10 12 14 16 18 20 2 4 6 |
Minimum Braid Representative:
Length is 10, width is 3 Braid index is 3 |
A Morse Link Presentation:
![]() |
3D Invariants: |
|
Alexander Polynomial: | t-4 - 6t-3 + 15t-2 - 24t-1 + 29 - 24t + 15t2 - 6t3 + t4 |
Conway Polynomial: | 1 - 2z2 - z4 + 2z6 + z8 |
Other knots with the same Alexander/Conway Polynomial: | {K11a28, ...} |
Determinant and Signature: | {121, 0} |
Jones Polynomial: | - q-5 + 5q-4 - 10q-3 + 15q-2 - 19q-1 + 21 - 19q + 15q2 - 10q3 + 5q4 - q5 |
Other knots (up to mirrors) with the same Jones Polynomial: | {...} |
A2 (sl(3)) Invariant: | - q-14 + 3q-12 - 2q-10 + 3q-8 - 3q-4 + 4q-2 - 5 + 4q2 - 3q4 + 3q8 - 2q10 + 3q12 - q14 |
HOMFLY-PT Polynomial: | 2a-2 + a-2z2 - 2a-2z4 - a-2z6 - 3 - 4z2 + 3z4 + 4z6 + z8 + 2a2 + a2z2 - 2a2z4 - a2z6 |
Kauffman Polynomial: | a-5z5 - 5a-4z4 + 5a-4z6 + 5a-3z3 - 15a-3z5 + 10a-3z7 - 2a-2 + 6a-2z2 - 3a-2z4 - 11a-2z6 + 10a-2z8 - 2a-1z + 21a-1z3 - 38a-1z5 + 14a-1z7 + 4a-1z9 - 3 + 12z2 + 4z4 - 32z6 + 20z8 - 2az + 21az3 - 38az5 + 14az7 + 4az9 - 2a2 + 6a2z2 - 3a2z4 - 11a2z6 + 10a2z8 + 5a3z3 - 15a3z5 + 10a3z7 - 5a4z4 + 5a4z6 + a5z5 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {-2, 0} |
Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 10123. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.) |
|
n | Coloured Jones Polynomial (in the (n+1)-dimensional representation of sl(2)) |
2 | q-15 - 5q-14 + 5q-13 + 15q-12 - 41q-11 + 14q-10 + 80q-9 - 121q-8 - 10q-7 + 206q-6 - 197q-5 - 85q-4 + 331q-3 - 215q-2 - 169q-1 + 383 - 169q - 215q2 + 331q3 - 85q4 - 197q5 + 206q6 - 10q7 - 121q8 + 80q9 + 14q10 - 41q11 + 15q12 + 5q13 - 5q14 + q15 |
3 | - q-30 + 5q-29 - 5q-28 - 10q-27 + 11q-26 + 31q-25 - 20q-24 - 95q-23 + 46q-22 + 200q-21 - 25q-20 - 405q-19 - 59q-18 + 674q-17 + 283q-16 - 980q-15 - 659q-14 + 1229q-13 + 1193q-12 - 1376q-11 - 1800q-10 + 1364q-9 + 2413q-8 - 1205q-7 - 2948q-6 + 930q-5 + 3353q-4 - 584q-3 - 3597q-2 + 192q-1 + 3691 + 192q - 3597q2 - 584q3 + 3353q4 + 930q5 - 2948q6 - 1205q7 + 2413q8 + 1364q9 - 1800q10 - 1376q11 + 1193q12 + 1229q13 - 659q14 - 980q15 + 283q16 + 674q17 - 59q18 - 405q19 - 25q20 + 200q21 + 46q22 - 95q23 - 20q24 + 31q25 + 11q26 - 10q27 - 5q28 + 5q29 - q30 |
4 | q-50 - 5q-49 + 5q-48 + 10q-47 - 16q-46 - q-45 - 25q-44 + 50q-43 + 75q-42 - 111q-41 - 76q-40 - 144q-39 + 300q-38 + 521q-37 - 300q-36 - 645q-35 - 1029q-34 + 795q-33 + 2396q-32 + 536q-31 - 1785q-30 - 4555q-29 - 371q-28 + 5976q-27 + 5172q-26 - 707q-25 - 11055q-24 - 6857q-23 + 7535q-22 + 13845q-21 + 6944q-20 - 15956q-19 - 18552q-18 + 2209q-17 + 21368q-16 + 20543q-15 - 14191q-14 - 29641q-13 - 9205q-12 + 22728q-11 + 33968q-10 - 6460q-9 - 35045q-8 - 21175q-7 + 18340q-6 + 42330q-5 + 2887q-4 - 34554q-3 - 29818q-2 + 11268q-1 + 44955 + 11268q - 29818q2 - 34554q3 + 2887q4 + 42330q5 + 18340q6 - 21175q7 - 35045q8 - 6460q9 + 33968q10 + 22728q11 - 9205q12 - 29641q13 - 14191q14 + 20543q15 + 21368q16 + 2209q17 - 18552q18 - 15956q19 + 6944q20 + 13845q21 + 7535q22 - 6857q23 - 11055q24 - 707q25 + 5172q26 + 5976q27 - 371q28 - 4555q29 - 1785q30 + 536q31 + 2396q32 + 795q33 - 1029q34 - 645q35 - 300q36 + 521q37 + 300q38 - 144q39 - 76q40 - 111q41 + 75q42 + 50q43 - 25q44 - q45 - 16q46 + 10q47 + 5q48 - 5q49 + q50 |
5 | - q-75 + 5q-74 - 5q-73 - 10q-72 + 16q-71 + 6q-70 - 5q-69 - 5q-68 - 30q-67 - 25q-66 + 82q-65 + 120q-64 - 26q-63 - 216q-62 - 316q-61 - 60q-60 + 551q-59 + 1025q-58 + 464q-57 - 1237q-56 - 2571q-55 - 1825q-54 + 1562q-53 + 5586q-52 + 5808q-51 - 618q-50 - 9956q-49 - 13478q-48 - 4712q-47 + 13601q-46 + 26496q-45 + 17652q-44 - 12935q-43 - 42692q-42 - 41331q-41 + 1497q-40 + 57823q-39 + 75942q-38 + 25990q-37 - 63660q-36 - 117173q-35 - 72692q-34 + 51927q-33 + 156391q-32 + 136191q-31 - 16419q-30 - 183351q-29 - 208746q-28 - 43200q-27 + 188890q-26 + 279271q-25 + 121855q-24 - 169188q-23 - 337053q-22 - 209298q-21 + 125956q-20 + 374479q-19 + 294696q-18 - 65918q-17 - 389525q-16 - 368820q-15 - 1823q-14 + 384561q-13 + 426473q-12 + 69028q-11 - 364895q-10 - 466752q-9 - 130155q-8 + 336393q-7 + 491875q-6 + 182697q-5 - 303191q-4 - 504874q-3 - 227767q-2 + 267093q-1 + 509105 + 267093q - 227767q2 - 504874q3 - 303191q4 + 182697q5 + 491875q6 + 336393q7 - 130155q8 - 466752q9 - 364895q10 + 69028q11 + 426473q12 + 384561q13 - 1823q14 - 368820q15 - 389525q16 - 65918q17 + 294696q18 + 374479q19 + 125956q20 - 209298q21 - 337053q22 - 169188q23 + 121855q24 + 279271q25 + 188890q26 - 43200q27 - 208746q28 - 183351q29 - 16419q30 + 136191q31 + 156391q32 + 51927q33 - 72692q34 - 117173q35 - 63660q36 + 25990q37 + 75942q38 + 57823q39 + 1497q40 - 41331q41 - 42692q42 - 12935q43 + 17652q44 + 26496q45 + 13601q46 - 4712q47 - 13478q48 - 9956q49 - 618q50 + 5808q51 + 5586q52 + 1562q53 - 1825q54 - 2571q55 - 1237q56 + 464q57 + 1025q58 + 551q59 - 60q60 - 316q61 - 216q62 - 26q63 + 120q64 + 82q65 - 25q66 - 30q67 - 5q68 - 5q69 + 6q70 + 16q71 - 10q72 - 5q73 + 5q74 - q75 |
6 | q-105 - 5q-104 + 5q-103 + 10q-102 - 16q-101 - 6q-100 + 35q-98 - 15q-97 - 20q-96 + 54q-95 - 111q-94 - 45q-93 + 67q-92 + 286q-91 + 100q-90 - 200q-89 - 160q-88 - 876q-87 - 519q-86 + 547q-85 + 2266q-84 + 2135q-83 + 369q-82 - 1755q-81 - 6510q-80 - 6759q-79 - 1634q-78 + 9549q-77 + 16670q-76 + 15089q-75 + 3490q-74 - 23671q-73 - 42311q-72 - 38074q-71 + 2177q-70 + 53656q-69 + 89894q-68 + 80429q-67 - 5927q-66 - 116971q-65 - 188750q-64 - 139516q-63 + 17510q-62 + 223702q-61 + 350846q-60 + 248163q-59 - 55084q-58 - 421057q-57 - 579766q-56 - 398132q-55 + 125462q-54 + 718160q-53 + 933692q-52 + 566398q-51 - 296113q-50 - 1120591q-49 - 1390524q-48 - 737424q-47 + 576892q-46 + 1714502q-45 + 1904108q-44 + 799778q-43 - 994356q-42 - 2457541q-41 - 2432667q-40 - 718282q-39 + 1687441q-38 + 3280016q-37 + 2803073q-36 + 415859q-35 - 2605860q-34 - 4118660q-33 - 2944138q-32 + 316119q-31 + 3666270q-30 + 4743125q-29 + 2723860q-28 - 1414996q-27 - 4788145q-26 - 5050456q-25 - 1878123q-24 + 2771269q-23 + 5680763q-22 + 4861446q-21 + 506904q-20 - 4269721q-19 - 6201858q-18 - 3876461q-17 + 1233253q-16 + 5545016q-15 + 6124552q-14 + 2246899q-13 - 3178939q-12 - 6406680q-11 - 5126450q-10 - 178345q-9 + 4894067q-8 + 6587383q-7 + 3410011q-6 - 2125705q-5 - 6152435q-4 - 5762576q-3 - 1219025q-2 + 4184939q-1 + 6671309 + 4184939q - 1219025q2 - 5762576q3 - 6152435q4 - 2125705q5 + 3410011q6 + 6587383q7 + 4894067q8 - 178345q9 - 5126450q10 - 6406680q11 - 3178939q12 + 2246899q13 + 6124552q14 + 5545016q15 + 1233253q16 - 3876461q17 - 6201858q18 - 4269721q19 + 506904q20 + 4861446q21 + 5680763q22 + 2771269q23 - 1878123q24 - 5050456q25 - 4788145q26 - 1414996q27 + 2723860q28 + 4743125q29 + 3666270q30 + 316119q31 - 2944138q32 - 4118660q33 - 2605860q34 + 415859q35 + 2803073q36 + 3280016q37 + 1687441q38 - 718282q39 - 2432667q40 - 2457541q41 - 994356q42 + 799778q43 + 1904108q44 + 1714502q45 + 576892q46 - 737424q47 - 1390524q48 - 1120591q49 - 296113q50 + 566398q51 + 933692q52 + 718160q53 + 125462q54 - 398132q55 - 579766q56 - 421057q57 - 55084q58 + 248163q59 + 350846q60 + 223702q61 + 17510q62 - 139516q63 - 188750q64 - 116971q65 - 5927q66 + 80429q67 + 89894q68 + 53656q69 + 2177q70 - 38074q71 - 42311q72 - 23671q73 + 3490q74 + 15089q75 + 16670q76 + 9549q77 - 1634q78 - 6759q79 - 6510q80 - 1755q81 + 369q82 + 2135q83 + 2266q84 + 547q85 - 519q86 - 876q87 - 160q88 - 200q89 + 100q90 + 286q91 + 67q92 - 45q93 - 111q94 + 54q95 - 20q96 - 15q97 + 35q98 - 6q100 - 16q101 + 10q102 + 5q103 - 5q104 + q105 |
7 | - q-140 + 5q-139 - 5q-138 - 10q-137 + 16q-136 + 6q-135 - 30q-133 - 15q-132 + 65q-131 - 9q-130 - 25q-129 + 36q-128 - 11q-127 - 42q-126 - 195q-125 - 115q-124 + 385q-123 + 395q-122 + 319q-121 + 136q-120 - 646q-119 - 1137q-118 - 1890q-117 - 1295q-116 + 1720q-115 + 4250q-114 + 5950q-113 + 4577q-112 - 1660q-111 - 9312q-110 - 17220q-109 - 18195q-108 - 4883q-107 + 17046q-106 + 41839q-105 + 52772q-104 + 33340q-103 - 13156q-102 - 78969q-101 - 129393q-100 - 120485q-99 - 37709q-98 + 110481q-97 + 258889q-96 + 312390q-95 + 212678q-94 - 58409q-93 - 408671q-92 - 655018q-91 - 629387q-90 - 225618q-89 + 455543q-88 + 1111993q-87 + 1386952q-86 + 974072q-85 - 120295q-84 - 1490425q-83 - 2486737q-82 - 2411772q-81 - 992130q-80 + 1359420q-79 + 3658056q-78 + 4600767q-77 + 3312410q-76 - 69631q-75 - 4295721q-74 - 7250018q-73 - 7038624q-72 - 3064728q-71 + 3458772q-70 + 9564329q-69 + 11904596q-68 + 8481876q-67 - 127110q-66 - 10320484q-65 - 16996224q-64 - 16013247q-63 - 6427765q-62 + 8135986q-61 + 20830152q-60 + 24710309q-59 + 16239649q-58 - 1944871q-57 - 21701623q-56 - 32924207q-55 - 28421781q-54 - 8547351q-53 + 18203416q-52 + 38688427q-51 + 41268842q-50 + 22629174q-49 - 9727922q-48 - 40298558q-47 - 52668841q-46 - 38661673q-45 - 3265789q-44 + 36818791q-43 + 60675114q-42 + 54508287q-41 + 19350236q-40 - 28369637q-39 - 64052090q-38 - 68100082q-37 - 36505322q-36 + 16059829q-35 + 62539208q-34 + 77949831q-33 + 52680978q-32 - 1622508q-31 - 56831245q-30 - 83452910q-29 - 66273208q-28 - 13063190q-27 + 48269134q-26 + 84870725q-25 + 76415546q-24 + 26435776q-23 - 38413430q-22 - 83109137q-21 - 83022604q-20 - 37518962q-19 + 28658568q-18 + 79366271q-17 + 86611850q-16 + 45992202q-15 - 19960604q-14 - 74793555q-13 - 88046411q-12 - 52101041q-11 + 12750874q-10 + 70271955q-9 + 88260356q-8 + 56446409q-7 - 6976270q-6 - 66276594q-5 - 88039714q-4 - 59795350q-3 + 2203806q-2 + 62882041q-1 + 87910159 + 62882041q + 2203806q2 - 59795350q3 - 88039714q4 - 66276594q5 - 6976270q6 + 56446409q7 + 88260356q8 + 70271955q9 + 12750874q10 - 52101041q11 - 88046411q12 - 74793555q13 - 19960604q14 + 45992202q15 + 86611850q16 + 79366271q17 + 28658568q18 - 37518962q19 - 83022604q20 - 83109137q21 - 38413430q22 + 26435776q23 + 76415546q24 + 84870725q25 + 48269134q26 - 13063190q27 - 66273208q28 - 83452910q29 - 56831245q30 - 1622508q31 + 52680978q32 + 77949831q33 + 62539208q34 + 16059829q35 - 36505322q36 - 68100082q37 - 64052090q38 - 28369637q39 + 19350236q40 + 54508287q41 + 60675114q42 + 36818791q43 - 3265789q44 - 38661673q45 - 52668841q46 - 40298558q47 - 9727922q48 + 22629174q49 + 41268842q50 + 38688427q51 + 18203416q52 - 8547351q53 - 28421781q54 - 32924207q55 - 21701623q56 - 1944871q57 + 16239649q58 + 24710309q59 + 20830152q60 + 8135986q61 - 6427765q62 - 16013247q63 - 16996224q64 - 10320484q65 - 127110q66 + 8481876q67 + 11904596q68 + 9564329q69 + 3458772q70 - 3064728q71 - 7038624q72 - 7250018q73 - 4295721q74 - 69631q75 + 3312410q76 + 4600767q77 + 3658056q78 + 1359420q79 - 992130q80 - 2411772q81 - 2486737q82 - 1490425q83 - 120295q84 + 974072q85 + 1386952q86 + 1111993q87 + 455543q88 - 225618q89 - 629387q90 - 655018q91 - 408671q92 - 58409q93 + 212678q94 + 312390q95 + 258889q96 + 110481q97 - 37709q98 - 120485q99 - 129393q100 - 78969q101 - 13156q102 + 33340q103 + 52772q104 + 41839q105 + 17046q106 - 4883q107 - 18195q108 - 17220q109 - 9312q110 - 1660q111 + 4577q112 + 5950q113 + 4250q114 + 1720q115 - 1295q116 - 1890q117 - 1137q118 - 646q119 + 136q120 + 319q121 + 395q122 + 385q123 - 115q124 - 195q125 - 42q126 - 11q127 + 36q128 - 25q129 - 9q130 + 65q131 - 15q132 - 30q133 + 6q135 + 16q136 - 10q137 - 5q138 + 5q139 - q140 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | PD[Knot[10, 123]] |
Out[2]= | PD[X[8, 2, 9, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[4, 18, 5, 17], > X[18, 11, 19, 12], X[2, 15, 3, 16], X[16, 10, 17, 9], X[20, 14, 1, 13], > X[14, 7, 15, 8], X[6, 19, 7, 20]] |
In[3]:= | GaussCode[Knot[10, 123]] |
Out[3]= | GaussCode[1, -6, 2, -4, 3, -10, 9, -1, 7, -2, 5, -3, 8, -9, 6, -7, 4, -5, 10, > -8] |
In[4]:= | DTCode[Knot[10, 123]] |
Out[4]= | DTCode[8, 10, 12, 14, 16, 18, 20, 2, 4, 6] |
In[5]:= | br = BR[Knot[10, 123]] |
Out[5]= | BR[3, {-1, 2, -1, 2, -1, 2, -1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 10} |
In[7]:= | BraidIndex[Knot[10, 123]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[10, 123]]] |
![]() | |
Out[8]= | -Graphics- |
In[9]:= | #[Knot[10, 123]]& /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 2, 4, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 123]][t] |
Out[10]= | -4 6 15 24 2 3 4 29 + t - -- + -- - -- - 24 t + 15 t - 6 t + t 3 2 t t t |
In[11]:= | Conway[Knot[10, 123]][z] |
Out[11]= | 2 4 6 8 1 - 2 z - z + 2 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 123], Knot[11, Alternating, 28]} |
In[13]:= | {KnotDet[Knot[10, 123]], KnotSignature[Knot[10, 123]]} |
Out[13]= | {121, 0} |
In[14]:= | Jones[Knot[10, 123]][q] |
Out[14]= | -5 5 10 15 19 2 3 4 5 21 - q + -- - -- + -- - -- - 19 q + 15 q - 10 q + 5 q - q 4 3 2 q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 123]} |
In[16]:= | A2Invariant[Knot[10, 123]][q] |
Out[16]= | -14 3 2 3 3 4 2 4 8 10 12 14 -5 - q + --- - --- + -- - -- + -- + 4 q - 3 q + 3 q - 2 q + 3 q - q 12 10 8 4 2 q q q q q |
In[17]:= | HOMFLYPT[Knot[10, 123]][a, z] |
Out[17]= | 2 4 6 2 2 2 z 2 2 4 2 z 2 4 6 z -3 + -- + 2 a - 4 z + -- + a z + 3 z - ---- - 2 a z + 4 z - -- - 2 2 2 2 a a a a 2 6 8 > a z + z |
In[18]:= | Kauffman[Knot[10, 123]][a, z] |
Out[18]= | 2 3 3 2 2 2 z 2 6 z 2 2 5 z 21 z -3 - -- - 2 a - --- - 2 a z + 12 z + ---- + 6 a z + ---- + ----- + 2 a 2 3 a a a a 4 4 5 5 3 3 3 4 5 z 3 z 2 4 4 4 z 15 z > 21 a z + 5 a z + 4 z - ---- - ---- - 3 a z - 5 a z + -- - ----- - 4 2 5 3 a a a a 5 6 6 38 z 5 3 5 5 5 6 5 z 11 z 2 6 > ----- - 38 a z - 15 a z + a z - 32 z + ---- - ----- - 11 a z + a 4 2 a a 7 7 8 4 6 10 z 14 z 7 3 7 8 10 z 2 8 > 5 a z + ----- + ----- + 14 a z + 10 a z + 20 z + ----- + 10 a z + 3 a 2 a a 9 4 z 9 > ---- + 4 a z a |
In[19]:= | {Vassiliev[2][Knot[10, 123]], Vassiliev[3][Knot[10, 123]]} |
Out[19]= | {-2, 0} |
In[20]:= | Kh[Knot[10, 123]][q, t] |
Out[20]= | 11 1 4 1 6 4 9 6 10 -- + 11 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 3 q t q t q t q t q t q t q t q t 9 3 3 2 5 2 5 3 7 3 7 4 > --- + 9 q t + 10 q t + 6 q t + 9 q t + 4 q t + 6 q t + q t + q t 9 4 11 5 > 4 q t + q t |
In[21]:= | ColouredJones[Knot[10, 123], 2][q] |
Out[21]= | -15 5 5 15 41 14 80 121 10 206 197 85 383 + q - --- + --- + --- - --- + --- + -- - --- - -- + --- - --- - -- + 14 13 12 11 10 9 8 7 6 5 4 q q q q q q q q q q q 331 215 169 2 3 4 5 6 > --- - --- - --- - 169 q - 215 q + 331 q - 85 q - 197 q + 206 q - 3 2 q q q 7 8 9 10 11 12 13 14 15 > 10 q - 121 q + 80 q + 14 q - 41 q + 15 q + 5 q - 5 q + q |
Dror Bar-Natan: The Knot Atlas: The Rolfsen Knot Table: The Knot 10123 |
|