© | Dror Bar-Natan: The Knot Atlas: Torus Knots: |
|
![]() TubePlot |
This page is passe. Go here
instead!
The 9-Crossing Torus Knot T(9,2)Visit T(9,2)'s page at Knotilus! |
PD Presentation: | X7,17,8,16 X17,9,18,8 X9,1,10,18 X1,11,2,10 X11,3,12,2 X3,13,4,12 X13,5,14,4 X5,15,6,14 X15,7,16,6 |
Gauss Code: | {-4, 5, -6, 7, -8, 9, -1, 2, -3, 4, -5, 6, -7, 8, -9, 1, -2, 3} |
Braid Representative: |
|
Alexander Polynomial: | t-4 - t-3 + t-2 - t-1 + 1 - t + t2 - t3 + t4 |
Conway Polynomial: | 1 + 10z2 + 15z4 + 7z6 + z8 |
Other knots with the same Alexander/Conway Polynomial: | {91, ...} |
Determinant and Signature: | {9, 8} |
Jones Polynomial: | q4 + q6 - q7 + q8 - q9 + q10 - q11 + q12 - q13 |
Other knots (up to mirrors) with the same Jones Polynomial: | {91, ...} |
Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): | q8 + q11 - q13 + q14 - q16 + q17 - q19 + q20 - q22 + q23 - q25 + q26 - q27 - q28 + q29 - q31 + q32 - q34 + q35 |
A2 (sl(3)) Invariant: | q14 + q16 + 2q18 + q20 + q22 - q34 - q36 - q38 |
Kauffman Polynomial: | a-17z + a-16z2 - a-15z + a-15z3 - 2a-14z2 + a-14z4 + a-13z - 3a-13z3 + a-13z5 + 3a-12z2 - 4a-12z4 + a-12z6 - a-11z + 6a-11z3 - 5a-11z5 + a-11z7 + 4a-10 - 14a-10z2 + 16a-10z4 - 7a-10z6 + a-10z8 - 4a-9z + 10a-9z3 - 6a-9z5 + a-9z7 + 5a-8 - 20a-8z2 + 21a-8z4 - 8a-8z6 + a-8z8 |
V2 and V3, the type 2 and 3 Vassiliev invariants: | {10, 30} |
Khovanov Homology.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=8 is the signature of
T(9,2). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ | |||||||||
27 | 1 | -1 | ||||||||||||||||||
25 | 0 | |||||||||||||||||||
23 | 1 | 1 | 0 | |||||||||||||||||
21 | 0 | |||||||||||||||||||
19 | 1 | 1 | 0 | |||||||||||||||||
17 | 0 | |||||||||||||||||||
15 | 1 | 1 | 0 | |||||||||||||||||
13 | 0 | |||||||||||||||||||
11 | 1 | 1 | ||||||||||||||||||
9 | 1 | 1 | ||||||||||||||||||
7 | 1 | 1 |
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | TubePlot[TorusKnot[9, 2]] |
![]() | |
Out[2]= | -Graphics- |
In[3]:= | Crossings[TorusKnot[9, 2]] |
Out[3]= | 9 |
In[4]:= | PD[TorusKnot[9, 2]] |
Out[4]= | PD[X[7, 17, 8, 16], X[17, 9, 18, 8], X[9, 1, 10, 18], X[1, 11, 2, 10], > X[11, 3, 12, 2], X[3, 13, 4, 12], X[13, 5, 14, 4], X[5, 15, 6, 14], > X[15, 7, 16, 6]] |
In[5]:= | GaussCode[TorusKnot[9, 2]] |
Out[5]= | GaussCode[-4, 5, -6, 7, -8, 9, -1, 2, -3, 4, -5, 6, -7, 8, -9, 1, -2, 3] |
In[6]:= | BR[TorusKnot[9, 2]] |
Out[6]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[7]:= | alex = Alexander[TorusKnot[9, 2]][t] |
Out[7]= | -4 -3 -2 1 2 3 4 1 + t - t + t - - - t + t - t + t t |
In[8]:= | Conway[TorusKnot[9, 2]][z] |
Out[8]= | 2 4 6 8 1 + 10 z + 15 z + 7 z + z |
In[9]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[9]= | {Knot[9, 1]} |
In[10]:= | {KnotDet[TorusKnot[9, 2]], KnotSignature[TorusKnot[9, 2]]} |
Out[10]= | {9, 8} |
In[11]:= | J=Jones[TorusKnot[9, 2]][q] |
Out[11]= | 4 6 7 8 9 10 11 12 13 q + q - q + q - q + q - q + q - q |
In[12]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[12]= | {Knot[9, 1]} |
In[13]:= | ColouredJones[TorusKnot[9, 2], 2][q] |
Out[13]= | 8 11 13 14 16 17 19 20 22 23 25 26 27 q + q - q + q - q + q - q + q - q + q - q + q - q - 28 29 31 32 34 35 > q + q - q + q - q + q |
In[14]:= | A2Invariant[TorusKnot[9, 2]][q] |
Out[14]= | 14 16 18 20 22 34 36 38 q + q + 2 q + q + q - q - q - q |
In[15]:= | Kauffman[TorusKnot[9, 2]][a, z] |
Out[15]= | 2 2 2 2 2 4 5 z z z z 4 z z 2 z 3 z 14 z 20 z --- + -- + --- - --- + --- - --- - --- + --- - ---- + ---- - ----- - ----- + 10 8 17 15 13 11 9 16 14 12 10 8 a a a a a a a a a a a a 3 3 3 3 4 4 4 4 5 5 z 3 z 6 z 10 z z 4 z 16 z 21 z z 5 z > --- - ---- + ---- + ----- + --- - ---- + ----- + ----- + --- - ---- - 15 13 11 9 14 12 10 8 13 11 a a a a a a a a a a 5 6 6 6 7 7 8 8 6 z z 7 z 8 z z z z z > ---- + --- - ---- - ---- + --- + -- + --- + -- 9 12 10 8 11 9 10 8 a a a a a a a a |
In[16]:= | {Vassiliev[2][TorusKnot[9, 2]], Vassiliev[3][TorusKnot[9, 2]]} |
Out[16]= | {10, 30} |
In[17]:= | Kh[TorusKnot[9, 2]][q, t] |
Out[17]= | 7 9 11 2 15 3 15 4 19 5 19 6 23 7 23 8 27 9 q + q + q t + q t + q t + q t + q t + q t + q t + q t |
Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(9,2) |
|